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The Linear Regime: The Power Spectrum
Growth of Linear Perturbations before the Era of the First Galaxies 3

Figure 1. Power spectra of density and temperature fluctu-
ations vs. comoving wavenumber, at redshifts 1200, 800, 400,
and 200. We consider fluctuations in the CDM density (solid
curves), baryon density (dotted curves), baryon temperature
(short-dashed curves), and photon temperature (long-dashed
curves).

but the thermal coupling remains strong, i.e., the coefficient
of the coupling term in equation (8) remains very large, and
it is numerically highly inefficient to solve this equation di-
rectly. We instead develop a simple approximation that may
be used during this era of thermal tight coupling. First we
write the expression for d(δT − δTγ )/dt using equation (8)
along with the expression for dδTγ /dt as computed by CMB-
FAST. As long as the thermal coupling is effective, the dif-
ference δT − δTγ is very small, i.e., |δT − δTγ | " |δb|, so that
the various terms in the expression for d(δT − δTγ )/dt must
cancel each other nearly completely. Since this expression
depends on δT [see the right-hand side of equation (8)], we
simply set δT to the value that yields d(δT −δTγ )/dt ≡ 0. We
have checked that using this approximation down to z = 900
affects the power spectra by a fraction of a percent at most.

For the concordance set of cosmological parameters
(Spergel et al. 2003), with a scale-invariant primordial power
spectrum normalized to σ8 = 0.9 at z = 0, Figure 1 com-
pares the magnitude of the fluctuations in the CDM and
baryon densities, and in the baryon and photon temper-
atures. For each quantity, the plot shows the dimension-
less combination [k3P (k)/(2π2)]1/2, where P (k) is the corre-
sponding power spectrum of fluctuations. Note that regions
where the fluctuations oscillate in sign (as a function of k)
are difficult to show precisely in such a plot (e.g., the pho-
tons and baryons at k = 0.01–1 Mpc−1 at z = 1200, and
the baryon temperature at k > 1000 Mpc−1 at z = 400).
Note also that the photon temperature perturbations as
shown are simply 1/4 of the photon density perturbations
[see eq. (1)].

After recombination, two main forces affect the baryon
density and temperature fluctuations, namely, the thermal-

ization with the CMB and the gravitational force that at-
tracts the baryons to the dark matter potential wells. As
shown in the figure, the density perturbations in all species
grow together [except that δγ = (4/3)δb] on scales where
gravity is unopposed, outside the horizon (i.e., at k ! 0.01
Mpc−1 at z ∼ 1000). At z = 1200 the perturbations in
the baryon-photon fluid oscillate as acoustic waves on scales
of order the sound horizon (k ∼ 0.01), while smaller-scale
perturbations in both the photons and baryons are damped
by photon diffusion (Silk damping) and the drag of the dif-
fusing photons on the baryons. Since the initial dark matter
density perturbations increase with k, while the photon per-
turbations are damped on the smallest scales by photon free
streaming, on sufficiently small scales the power spectra of δb

and δT roughly assume the shape of the dark matter fluctu-
ation δdm (except for the gas-pressure cutoff at the smallest
scales), due to the effect of gravitational attraction on δb

and of the resulting adiabatic expansion on δT .
This evolution involves two similar physical systems.

In each case, a target perturbation δ0 is driven toward one
perturbation δ1, but this forcing is opposed by coupling to
a second perturbation δ2. The values of δ1 and δ2 are com-
parable on large scales but |δ2| " |δ1| on small scales. As
long as the coupling is strong, δ0 ≈ δ2 on large scales, while
the effect of δ1 is apparent in the form of δ0 on small scales
although the coupling maintains |δ0| " |δ1|. After the cou-
pling weakens, the perturbation δ0 is free to begin rising
toward δ1, but this rise occurs only gradually. In the first
case, δ0 = δb is driven by gravity toward δ1 = δdm, while
mechanical coupling to δ2 = δγ is the opposing force. In the
second case, δ0 = δT is driven by adiabatic expansion toward
δ1 = 2

3 δb, with resistance provided by thermal coupling to
δ2 = δTγ . The mechanical coupling ends at z ∼ 1000 while
the thermal coupling is over by z ∼ 200.

The Figure also shows that the thermal tight-coupling
approximation is accurate at the highest redshifts shown, on
large scales since |δT − δTγ | " |δTγ | < |δb|, while on small
scales δT and δTγ are not strongly coupled but each is indi-
vidually very small compared to δb. Even at somewhat lower
redshifts, δb " δdm and δT " δb on sub-horizon scales. By
z = 200 the baryon infall into the dark matter potentials is
well advanced and adiabatic expansion is becoming increas-
ingly important in setting the baryon temperature. By this
redshift, the photon perturbations are already negligible at
k " 0.01 Mpc−1, justifying their neglect by Barkana & Loeb
(2005c) on these scales.

3 GROWTH OF SMALL SCALE DENSITY

PERTURBATIONS

On small scales (i.e., at large wavenumbers) the baryon
perturbation growth is affected by the pressure of the gas,
which affects the dark matter as well since the baryons con-
tribute a small but significant fraction of the total gravita-
tional force. The evolution of sub-horizon linear perturba-
tions is described by two coupled second-order differential
equations. The dark matter feels the combined gravity of
itself and the baryons:

δ̈dm + 2H δ̇dm =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) , (9)
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Figure 1. Power spectra of density and temperature fluctu-
ations vs. comoving wavenumber, at redshifts 1200, 800, 400,
and 200. We consider fluctuations in the CDM density (solid
curves), baryon density (dotted curves), baryon temperature
(short-dashed curves), and photon temperature (long-dashed
curves).

but the thermal coupling remains strong, i.e., the coefficient
of the coupling term in equation (8) remains very large, and
it is numerically highly inefficient to solve this equation di-
rectly. We instead develop a simple approximation that may
be used during this era of thermal tight coupling. First we
write the expression for d(δT − δTγ )/dt using equation (8)
along with the expression for dδTγ /dt as computed by CMB-
FAST. As long as the thermal coupling is effective, the dif-
ference δT − δTγ is very small, i.e., |δT − δTγ | " |δb|, so that
the various terms in the expression for d(δT − δTγ )/dt must
cancel each other nearly completely. Since this expression
depends on δT [see the right-hand side of equation (8)], we
simply set δT to the value that yields d(δT −δTγ )/dt ≡ 0. We
have checked that using this approximation down to z = 900
affects the power spectra by a fraction of a percent at most.

For the concordance set of cosmological parameters
(Spergel et al. 2003), with a scale-invariant primordial power
spectrum normalized to σ8 = 0.9 at z = 0, Figure 1 com-
pares the magnitude of the fluctuations in the CDM and
baryon densities, and in the baryon and photon temper-
atures. For each quantity, the plot shows the dimension-
less combination [k3P (k)/(2π2)]1/2, where P (k) is the corre-
sponding power spectrum of fluctuations. Note that regions
where the fluctuations oscillate in sign (as a function of k)
are difficult to show precisely in such a plot (e.g., the pho-
tons and baryons at k = 0.01–1 Mpc−1 at z = 1200, and
the baryon temperature at k > 1000 Mpc−1 at z = 400).
Note also that the photon temperature perturbations as
shown are simply 1/4 of the photon density perturbations
[see eq. (1)].

After recombination, two main forces affect the baryon
density and temperature fluctuations, namely, the thermal-

ization with the CMB and the gravitational force that at-
tracts the baryons to the dark matter potential wells. As
shown in the figure, the density perturbations in all species
grow together [except that δγ = (4/3)δb] on scales where
gravity is unopposed, outside the horizon (i.e., at k ! 0.01
Mpc−1 at z ∼ 1000). At z = 1200 the perturbations in
the baryon-photon fluid oscillate as acoustic waves on scales
of order the sound horizon (k ∼ 0.01), while smaller-scale
perturbations in both the photons and baryons are damped
by photon diffusion (Silk damping) and the drag of the dif-
fusing photons on the baryons. Since the initial dark matter
density perturbations increase with k, while the photon per-
turbations are damped on the smallest scales by photon free
streaming, on sufficiently small scales the power spectra of δb

and δT roughly assume the shape of the dark matter fluctu-
ation δdm (except for the gas-pressure cutoff at the smallest
scales), due to the effect of gravitational attraction on δb

and of the resulting adiabatic expansion on δT .
This evolution involves two similar physical systems.

In each case, a target perturbation δ0 is driven toward one
perturbation δ1, but this forcing is opposed by coupling to
a second perturbation δ2. The values of δ1 and δ2 are com-
parable on large scales but |δ2| " |δ1| on small scales. As
long as the coupling is strong, δ0 ≈ δ2 on large scales, while
the effect of δ1 is apparent in the form of δ0 on small scales
although the coupling maintains |δ0| " |δ1|. After the cou-
pling weakens, the perturbation δ0 is free to begin rising
toward δ1, but this rise occurs only gradually. In the first
case, δ0 = δb is driven by gravity toward δ1 = δdm, while
mechanical coupling to δ2 = δγ is the opposing force. In the
second case, δ0 = δT is driven by adiabatic expansion toward
δ1 = 2

3 δb, with resistance provided by thermal coupling to
δ2 = δTγ . The mechanical coupling ends at z ∼ 1000 while
the thermal coupling is over by z ∼ 200.

The Figure also shows that the thermal tight-coupling
approximation is accurate at the highest redshifts shown, on
large scales since |δT − δTγ | " |δTγ | < |δb|, while on small
scales δT and δTγ are not strongly coupled but each is indi-
vidually very small compared to δb. Even at somewhat lower
redshifts, δb " δdm and δT " δb on sub-horizon scales. By
z = 200 the baryon infall into the dark matter potentials is
well advanced and adiabatic expansion is becoming increas-
ingly important in setting the baryon temperature. By this
redshift, the photon perturbations are already negligible at
k " 0.01 Mpc−1, justifying their neglect by Barkana & Loeb
(2005c) on these scales.

3 GROWTH OF SMALL SCALE DENSITY

PERTURBATIONS

On small scales (i.e., at large wavenumbers) the baryon
perturbation growth is affected by the pressure of the gas,
which affects the dark matter as well since the baryons con-
tribute a small but significant fraction of the total gravita-
tional force. The evolution of sub-horizon linear perturba-
tions is described by two coupled second-order differential
equations. The dark matter feels the combined gravity of
itself and the baryons:

δ̈dm + 2H δ̇dm =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) , (9)
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Figure 1. Power spectra of density and temperature fluctu-
ations vs. comoving wavenumber, at redshifts 1200, 800, 400,
and 200. We consider fluctuations in the CDM density (solid
curves), baryon density (dotted curves), baryon temperature
(short-dashed curves), and photon temperature (long-dashed
curves).

but the thermal coupling remains strong, i.e., the coefficient
of the coupling term in equation (8) remains very large, and
it is numerically highly inefficient to solve this equation di-
rectly. We instead develop a simple approximation that may
be used during this era of thermal tight coupling. First we
write the expression for d(δT − δTγ )/dt using equation (8)
along with the expression for dδTγ /dt as computed by CMB-
FAST. As long as the thermal coupling is effective, the dif-
ference δT − δTγ is very small, i.e., |δT − δTγ | " |δb|, so that
the various terms in the expression for d(δT − δTγ )/dt must
cancel each other nearly completely. Since this expression
depends on δT [see the right-hand side of equation (8)], we
simply set δT to the value that yields d(δT −δTγ )/dt ≡ 0. We
have checked that using this approximation down to z = 900
affects the power spectra by a fraction of a percent at most.
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spectrum normalized to σ8 = 0.9 at z = 0, Figure 1 com-
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atures. For each quantity, the plot shows the dimension-
less combination [k3P (k)/(2π2)]1/2, where P (k) is the corre-
sponding power spectrum of fluctuations. Note that regions
where the fluctuations oscillate in sign (as a function of k)
are difficult to show precisely in such a plot (e.g., the pho-
tons and baryons at k = 0.01–1 Mpc−1 at z = 1200, and
the baryon temperature at k > 1000 Mpc−1 at z = 400).
Note also that the photon temperature perturbations as
shown are simply 1/4 of the photon density perturbations
[see eq. (1)].

After recombination, two main forces affect the baryon
density and temperature fluctuations, namely, the thermal-

ization with the CMB and the gravitational force that at-
tracts the baryons to the dark matter potential wells. As
shown in the figure, the density perturbations in all species
grow together [except that δγ = (4/3)δb] on scales where
gravity is unopposed, outside the horizon (i.e., at k ! 0.01
Mpc−1 at z ∼ 1000). At z = 1200 the perturbations in
the baryon-photon fluid oscillate as acoustic waves on scales
of order the sound horizon (k ∼ 0.01), while smaller-scale
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by photon diffusion (Silk damping) and the drag of the dif-
fusing photons on the baryons. Since the initial dark matter
density perturbations increase with k, while the photon per-
turbations are damped on the smallest scales by photon free
streaming, on sufficiently small scales the power spectra of δb

and δT roughly assume the shape of the dark matter fluctu-
ation δdm (except for the gas-pressure cutoff at the smallest
scales), due to the effect of gravitational attraction on δb

and of the resulting adiabatic expansion on δT .
This evolution involves two similar physical systems.

In each case, a target perturbation δ0 is driven toward one
perturbation δ1, but this forcing is opposed by coupling to
a second perturbation δ2. The values of δ1 and δ2 are com-
parable on large scales but |δ2| " |δ1| on small scales. As
long as the coupling is strong, δ0 ≈ δ2 on large scales, while
the effect of δ1 is apparent in the form of δ0 on small scales
although the coupling maintains |δ0| " |δ1|. After the cou-
pling weakens, the perturbation δ0 is free to begin rising
toward δ1, but this rise occurs only gradually. In the first
case, δ0 = δb is driven by gravity toward δ1 = δdm, while
mechanical coupling to δ2 = δγ is the opposing force. In the
second case, δ0 = δT is driven by adiabatic expansion toward
δ1 = 2

3 δb, with resistance provided by thermal coupling to
δ2 = δTγ . The mechanical coupling ends at z ∼ 1000 while
the thermal coupling is over by z ∼ 200.

The Figure also shows that the thermal tight-coupling
approximation is accurate at the highest redshifts shown, on
large scales since |δT − δTγ | " |δTγ | < |δb|, while on small
scales δT and δTγ are not strongly coupled but each is indi-
vidually very small compared to δb. Even at somewhat lower
redshifts, δb " δdm and δT " δb on sub-horizon scales. By
z = 200 the baryon infall into the dark matter potentials is
well advanced and adiabatic expansion is becoming increas-
ingly important in setting the baryon temperature. By this
redshift, the photon perturbations are already negligible at
k " 0.01 Mpc−1, justifying their neglect by Barkana & Loeb
(2005c) on these scales.

3 GROWTH OF SMALL SCALE DENSITY

PERTURBATIONS

On small scales (i.e., at large wavenumbers) the baryon
perturbation growth is affected by the pressure of the gas,
which affects the dark matter as well since the baryons con-
tribute a small but significant fraction of the total gravita-
tional force. The evolution of sub-horizon linear perturba-
tions is described by two coupled second-order differential
equations. The dark matter feels the combined gravity of
itself and the baryons:

δ̈dm + 2H δ̇dm =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) , (9)
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where Ωm is the redshift zero matter density as a fraction of
the critical density. The baryons feel both gravity and pres-
sure. Prior analyses assumed a spatially uniform baryonic
sound speed cs(t) (e.g., Ma & Bertschinger 1995), yielding

δ̈b + 2H δ̇b =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) − k2

a2
c2
sδb , (10)

where c2
s = dp/dρ was calculated from the thermal evolution

of a uniform gas undergoing Hubble expansion:

c2
s ≡ kB T̄

µ

(

1 − 1
3

d log T̄
d log a

)

, (11)

where µ is the mean molecular weight. This also meant that
the gas temperature fluctuation was assumed to be propor-
tional throughout space to the density fluctuation, so that

δT

δb
=

c̄s
2

kB T̄ /µ
− 1 . (12)

In this paper we instead use the equation of state of an ideal
gas to derive a more general equation for the baryons,

δ̈b+2H δ̇b =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm)−k2

a2

kB T̄
µ

(δb + δT ) .(13)

Note that during recombination, we make a similar correc-
tion of the baryonic pressure force in the equations of CMB-
FAST. In order to solve for the density perturbations, an
evolution equation for the fluctuations in the temperature is
also required. On sub-horizon scales and at z ! 200 we can
neglect the perturbations in the temperature and density of
the photons in equation (8), yielding simply

dδT

dt
=

2
3

dδb

dt
− xe(t)

tγ
a−4 T̄γ

T̄
δT . (14)

Equations (4), (7), (9), (13) and (14) are a closed set of
equations describing the evolution of density and tempera-
ture perturbations. We note that Bharadwaj & Ali (2004a)
derived a similar equation to Eq.(14) but solved it only for
the case of a density perturbation that follows the Einstein-
de Sitter growing mode δb ∝ a and thus neglected spatial
variations in the speed of sound.

Figure 2 shows the power spectra at redshift 20 and
100. As time passes, the power spectrum of the baryons ap-
proaches that of the dark matter except for the pressure
cutoff, and the baryon temperature fluctuations increase as
well. However, even during the era of the formation of the
first galaxies (z ∼ 40–20), there is still significant memory in
the perturbations of their earlier coupling to the CMB. This
is highlighted in Figure 3, which shows the ratios δb/δdm

and δT /δb. In both quantities, the strong oscillations that
are apparent at z = 400 are slowly smoothed out toward
lower redshifts. At the largest scales, the baryons follow the
dark matter density, and δT /δb evolves from 1/3 (the value
during tight thermal coupling to the CMB) to ∼ 2/3 (from
adiabatic expansion). On smaller scales, the two ratios start
from values % 1 during mechanical/thermal coupling, and
increase towards δb/δdm = 1 and δT /δb = 2/3, respectively.
The former ratio approaches its asymptotic value earlier,
since the baryons decouple from the photons first mechan-
ically and only later thermally. At the smallest scales (be-
low the baryonic Jeans scale), the baryon fluctuation is sup-
pressed at all redshifts due to gas pressure, when the k2

term in equation (13) dominates. It is clear from this figure

Figure 2. Power spectra of density and temperature fluctua-
tions vs. comoving wavenumber, at redshifts 100 and 20. We
consider fluctuations in the CDM density (short-dashed curves),
baryon density (solid curves), and baryon temperature (long-
dashed curves).

Figure 3. Perturbation ratios δb/δdm and δT /δb vs. comoving
wavenumber. We consider z = 400 (dotted curves), z = 100 (solid
curves), and z = 20 (dashed curves).

that the traditional assumption of δT /δb being independent
of scale is inaccurate at all redshifts considered here.

Figure 4 shows a detailed comparison between the fluc-
tuation growth described by our improved equation (13) and
that given by the traditional equation (10). In the improved
calculation, the ratio δT /δb shows different behaviors on the
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ABSTRACT

The gas in high redshift halos plays important role in the formation of the

first generation of galaxies and reionization. Recently it was shown in the frame

work of linear theory that the relative velocity between the dark matter and

baryon at the time of recombination can e↵ect the structure formation history of

the Universe (?).

1. Introduction

c2s ⌘
dP

d⇢
=

kBT̄

µ

✓
1�

d log T̄

d log ⇢

◆
, (1)

The formation of the first generation of galaxies in the Universe has been studied for

many years. High resolution cosmological simulations can follow complex astrophysical pro-

cesses, while analytical calculations can provide an over-all understanding, and can be used

to decouple di↵erent physical e↵ects seen in simulations. Analytic models are also useful for

estimating the limitations of numerical simulations such as insu�cient resolution and small

boxsizes (???). Combining the two approaches may o↵er many of the advantages of both.

Gas rich halos in the early Universe may very well be a nurturing ground for dwarf

galaxies (e.g., ???????, and references therein) perhaps even at a high star formation rate
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where Ωm is the redshift zero matter density as a fraction of
the critical density. The baryons feel both gravity and pres-
sure. Prior analyses assumed a spatially uniform baryonic
sound speed cs(t) (e.g., Ma & Bertschinger 1995), yielding
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s = dp/dρ was calculated from the thermal evolution

of a uniform gas undergoing Hubble expansion:
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where µ is the mean molecular weight. This also meant that
the gas temperature fluctuation was assumed to be propor-
tional throughout space to the density fluctuation, so that
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=
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kB T̄ /µ
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In this paper we instead use the equation of state of an ideal
gas to derive a more general equation for the baryons,
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Note that during recombination, we make a similar correc-
tion of the baryonic pressure force in the equations of CMB-
FAST. In order to solve for the density perturbations, an
evolution equation for the fluctuations in the temperature is
also required. On sub-horizon scales and at z ! 200 we can
neglect the perturbations in the temperature and density of
the photons in equation (8), yielding simply

dδT

dt
=

2
3

dδb

dt
− xe(t)

tγ
a−4 T̄γ

T̄
δT . (14)

Equations (4), (7), (9), (13) and (14) are a closed set of
equations describing the evolution of density and tempera-
ture perturbations. We note that Bharadwaj & Ali (2004a)
derived a similar equation to Eq.(14) but solved it only for
the case of a density perturbation that follows the Einstein-
de Sitter growing mode δb ∝ a and thus neglected spatial
variations in the speed of sound.

Figure 2 shows the power spectra at redshift 20 and
100. As time passes, the power spectrum of the baryons ap-
proaches that of the dark matter except for the pressure
cutoff, and the baryon temperature fluctuations increase as
well. However, even during the era of the formation of the
first galaxies (z ∼ 40–20), there is still significant memory in
the perturbations of their earlier coupling to the CMB. This
is highlighted in Figure 3, which shows the ratios δb/δdm

and δT /δb. In both quantities, the strong oscillations that
are apparent at z = 400 are slowly smoothed out toward
lower redshifts. At the largest scales, the baryons follow the
dark matter density, and δT /δb evolves from 1/3 (the value
during tight thermal coupling to the CMB) to ∼ 2/3 (from
adiabatic expansion). On smaller scales, the two ratios start
from values % 1 during mechanical/thermal coupling, and
increase towards δb/δdm = 1 and δT /δb = 2/3, respectively.
The former ratio approaches its asymptotic value earlier,
since the baryons decouple from the photons first mechan-
ically and only later thermally. At the smallest scales (be-
low the baryonic Jeans scale), the baryon fluctuation is sup-
pressed at all redshifts due to gas pressure, when the k2

term in equation (13) dominates. It is clear from this figure

Figure 2. Power spectra of density and temperature fluctua-
tions vs. comoving wavenumber, at redshifts 100 and 20. We
consider fluctuations in the CDM density (short-dashed curves),
baryon density (solid curves), and baryon temperature (long-
dashed curves).

Figure 3. Perturbation ratios δb/δdm and δT /δb vs. comoving
wavenumber. We consider z = 400 (dotted curves), z = 100 (solid
curves), and z = 20 (dashed curves).

that the traditional assumption of δT /δb being independent
of scale is inaccurate at all redshifts considered here.

Figure 4 shows a detailed comparison between the fluc-
tuation growth described by our improved equation (13) and
that given by the traditional equation (10). In the improved
calculation, the ratio δT /δb shows different behaviors on the
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halos at these redshifts are expected to host the first stars
(z ∼ 65 − 30 Naoz, Noter & Barkana 2006; Yoshida 2006;
Gao et al. 2007; Trenti, Stiavelli, & Michael Shull 2009a) and
even the first gamma-ray bursts (e.g., Bromm & Loeb 2006;
Naoz & Bromberg 2007). Thus, investigating the formation
properties of these halos is of prime importance .

Gas rich halos in the early Universe may very well be
a nurturing ground for dwarf galaxies, which at high red-
shift can form stars (e.g., Bromm, Coppi, & Larson 2002,
1999; Abel, Bryan, & Norman 2002; Yoshida et al. 2006;
Yoshida, Omukai & Hernquist 2008, and references therein)
perhaps even at a high star formation rate (Ricotti, Gnedin,
& Shull 2002; Greif et al. 2010; Clark et al. 2010). Their
properties are very important as they are responsible for
metal pollution and the ionizing radiation at these early
times (e.g., Shapiro, Iliev, & Raga 2004; Ciardi et al. 2006;
Gnedin, Kravtsov, & Chen 2008; Trenti & Stiavelli 2009b).
Moreover, halos that are too small for efficient cooling via
atomic hydrogen, i.e., minihalos, are most susceptible to the
effect of initial conditions. While they may not normally host
astrophysical sources, minihalos may produce a 21-cm sig-
nature (Kuhlen, Madau, & Montgomery (2006); Shapiro et
al. (2006); Naoz & Barkana (2008) but see Furlanetto & Oh
(2006)), and they can block ionizing radiation and produce
an overall delay in the initial progress of reionization (e.g.,
Barkana & Loeb 2002; Iliev et al. 2003, 2005; McQuinn et
al. 2007). The evolution of the halo gas fraction at various
epochs of the universe is of prime importance, particularly
in the early universe.

In this paper, we examine the effect of using different
initial conditions in simulations on the resulting minimum
gas-rich halo mass in the redshift regime z = 11−21. We per-
form Gadget-2 (Springel, Yoshida, & White 2001; Springel
2005) simulations using a total of 7683 × 2 particles. We
compare the initial conditions presented in Naoz & Barkana
(2005), which describe the linear evolution of overdensities
in a fully consistent way, to two other alternative ICs, often
used in the literature. We also compare to the prediction of
the gas-rich mass from linear theory. We describe our dif-
ferent initial conditions and simulations in sections 2 and
3, respectively. Our simulation results are presented in sec-
tion 4 where we divide our discussion to the evolution of
the non-linear power spectra (section 4.1) and to the mini-
mum gas-rich halo mass resulting from either linear theory
or from the simulations (section 4.2). Finally, we discuss our
conclusions (section 5).

Throughout this paper, we adopt the following cosmo-
logical parameters: (ΩΛ, ΩM, Ωb, n, σ8, H0)= (0.72, 0.28,
0.046, 1, 0.82, 70 km s−1 Mpc−1) (Komatsu et al. 2009).

2 DIFFERENT INITIAL CONDITION
MODELS - BASIC EQUATIONS

2.1 The fiducial ICs - ”fid”

We follow Naoz & Barkana (2005), who studied the linear
evolution of both dark matter and baryon overdensities. The
fluctuations of the temperature of the baryons (δT ) cannot
be described as a simple function of a spatially uniform bary-
onic sound speed cs(t), as was previously assumed (e.g., Ma
& Bertschinger 1995). Furthermore, at high redshifts, the

Figure 1. The relative difference (specifically, δmodel/δch − 1)
between the fiducial linear initial conditions and the alternative
models at z = 99. We consider the relative difference between the
fid ICs and the mean cs ICs for both the baryons and dark matter
(solid and short-dashed curves, respectively), and the relative dif-
ference between the fid ICs and the E-δ ICs for both the baryons
and dark matter (dotted and long-dashed curves, respectively).
Note that we have plotted here the absolute value; the mean cs
model gave a negative value (i.e., an underestimate compared to
the fid model) while the E-δ model gave a positive value (i.e., an
overestimate).

baryon density fluctuations (δb) are not equal to those of
dark matter (δdm) (contrary to a common assumption in
simulations; four redshift examples are shown in figure 1 of
Naoz & Barkana 2005). We label the power spectrum model
as the ”fid” (fiducial) ICs since it follows the evolution of
linear overdensities in a complete and consistent way.

Following Naoz & Barkana (2005) we write the basic
equations that describe the evolution of the dark matter,
baryon density and temperature fluctuations:

δ̈dm + 2H δ̇dm =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) , (1)

where fdm and fb are the mean cosmic dark matter and
baryonic fraction respectively. Here we follow the standard
notations for cosmological parameters such as Ωm, H0. The
baryons are also subject to a pressure term:

δ̈b+2H δ̇b =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm)−k2

a2

kBT̄
µ

(δb + δT ) ,(2)

where µ is the mean molecular weight, kB is the Boltzmann
constant and k is the wavenumber. Using the first law of
thermodynamics, Naoz & Barkana (2005) derived the equa-
tions for the evolution of the baryon average temperature
and temperature fluctuations:

dT̄
dt

= −2HT̄ +
xe(t)

tγ
(T̄γ − T̄ ) a−4 , (3)
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Figure 3. The ratio of the non-linear power spectra (specifically,
Pmodel/Pfid − 1) at z = 21, 15, and 12 (from bottom to top);
curves are denoted as in figure 1. Note that we have plotted here
the absolute value; the mean cs model underestimates and the
E-δ model overestimates the power spectrum compared to the fid
model.

seen from figure 3, the non-linear evolution of halos is still
strongly affected by the choice of initial conditions even at
redshift 12. The fid ICs (Naoz & Barkana 2005) describe
the linear evolution consistently and thus represent the best
available prescription for the initial conditions.

4.2 The minimum gas rich mass

Studying the galaxy evolution and reionization either by us-
ing simulations (both AMR and SPH) or by using analytical
calculations relies on knowing the amount of gas within the
dark matter halos. The simplest assumption, often used in
the literature, is that a dark matter halo has the mean cos-
mic fraction. This can lead to incorrect results, especially
when one tries to study star formation, galaxy mergers, and
related phenomena.

Consider the various scales involved in the formation of
non-linear objects containing DM and gas. On large scales
(small wavenumbers) gravity dominates halo formation and
gas pressure can be neglected. On small scales, on the other
hand, the pressure dominates gravity and prevents baryon
density fluctuations from growing together with the dark
matter fluctuations. The relative force balance at a given
time can be characterized by the Jeans (1928) scale, which
is the minimum scale on which a small gas perturbation will
grow due to gravity overcoming the pressure gradient. As
long as the Compton scattering of the CMB on the residual
free electrons after cosmic recombination kept the gas tem-
perature coupled to that of the CMB, the Jeans mass was
constant in time. However, at z ∼ 200 the gas temperature
decoupled from the CMB temperature and the Jeans mass
began to decrease with time as the gas cooled adiabatically.

Any overdensity on a scale more massive than the Jeans
mass at a given time can begin to collapse, due to a lack of
sufficient pressure. However, the Jeans mass is related only
to the evolution of perturbations at a given time. When the
Jeans mass itself varies with time, the overall suppression
of the growth of perturbations depends on a time-averaged
Jeans mass.

Gnedin & Hui (1998) defined a “filtering mass” that de-
scribes the highest mass scale on which the baryonic pressure
still manages to suppress the linear baryonic fluctuations sig-
nificantly. Gnedin (2000) suggested, based on a simulation,
that the filtering mass also describes the largest halo mass
whose gas content is significantly suppressed compared to
the cosmic baryon fraction. The latter mass scale, in gen-
eral termed the “characteristic mass”, is defined as the halo
mass for which the enclosed baryon fraction equals half the
mean cosmic fraction. Thus, the characteristic mass distin-
guishes between gas-rich and gas-poor halos. Many semi-
analytical models of dwarfs galaxies often use the charac-
teristic mass scale in order to estimate the gas fraction in
halos (e.g., Bullock, Kravtsov, & Weinberg 2000; Benson et
al. 2002a,b; Somerville 2002). Theoretically this sets an ap-
proximate minimum value on the mass that can still form
stars.

4.2.1 Prediction from linear theory

In linear theory the filtering mass, first defined by Gnedin
& Hui (1998), describes the highest mass scale on which
the baryon density fluctuations are suppressed significantly
compared to the dark matter fluctuations. Naoz & Barkana
(2007) included the fact that the baryons have smoother ICs
than the dark matter (see Naoz & Barkana 2005) and found
a lower value of the filtering mass (by a factor of 3− 10, de-
pending on the redshift). Following Naoz & Barkana (2007),
the filtering scale (specifically, the filtering wavenumber kF )
is defined by expanding the ratio of baryonic to total density
fluctuations to first order in k2:

δb
δtot

= 1− k2

k2
F

+ rLSS , (9)

where k is the wavenumber, and δb and δtot are the baryonic
and total (i.e., including both baryons and dark matter) den-
sity fluctuations, respectively. The parameter rLSS (a neg-
ative quantity) describes the relative difference between δb
and δtot on large scales (Naoz & Barkana 2007), i.e.,

rLSS ≡ ∆
δtot

, (10)

where ∆ = δb − δtot, (see also Barkana & Loeb 2005). The
ratio rLSS is independent of k, and its magnitude decreases
with time approximately ∝ 1/a, since ∆ is roughly constant
and δtot is dominated by the growing mode ∝ a (see figure
1 top panel in Naoz & Barkana 2007).

The filtering mass is defined from kF simply as:

MF =
4π
3
ρ̄0

(
1
2
2π
kF

)3

, (11)

where ρ̄0 is the mean matter density today. This relation
is one eighth of the definition in Gnedin (2000) (who also
used a non-standard definition of the Jeans mass). In fig-
ure 4 (bottom panel) we show the filtering mass (solid curve)
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resulting from eq. (11), as calculated in Naoz & Barkana
(2007) (see also their figure 3).

For each of the models we calculate the filtering mass
as described here, assuming the model’s initial conditions.
Since the simulation is limited in box size, all of the per-
turbations on large scales are effectively frozen in the sim-
ulation. Therefore, we do not extract rLSS directly from
the simulations, but instead calculate it based on the ini-
tial conditions as rLSS = ∆in/(δtot,ina), where the subscript
”in” refers to initial. Thus, for example, for the E-δ case,
rLSS = 0. Figure 4 (bottom panel) shows the analytical re-
sults of the filtering mass for the fid calculation, the mean
cs approximation and E-δ (solid, dashed and dotted curves,
respectively). Since the fid calculation is the most consistent
calculation, we compare the two other models to it.

The filtering mass represents the competition between
gravity and pressure, as it measures the largest scale at
which pressure has had a significant overall effect on halo
formation. Since it measures an integrated effect over the
formation, this mass scale is also very sensitive to the evolu-
tion history and the initial conditions (as shown in Naoz &
Barkana 2007). In the mean cs model, the temperature fluc-
tuations are greatly overestimated on all relevant scales (see
Naoz & Barkana 2005), while in reality the coupling to the
CMB (in the fid model) keeps the temperature fluctuations
highly suppressed for some time after recombination. More-
over, as mentioned in section 3.1 (and see also Appendix C),
we do not include explicitly the effect of initial temperature
fluctuations in the simulations. However, the temperature
fluctuations from higher redshifts influence the baryon den-
sity at the initial redshift (see figure 1) and suppress the
baryon density on small scales. As demonstrated in Naoz
& Barkana (2007) the system remembers the initial condi-
tions. In other words, the initially enhanced filtering mass
(compared to the fid model) helps maintain a higher filtering
mass even at moderately low redshift.

In the E-δ model, the baryon perturbations start out
much higher than in the other models, so one might expect
that the final baryon fraction in halos would tend to be
higher as well; here, however, it is important to separate
two issues. The high initial baryon perturbations in the E-δ
model are present at all scales, so they affect even high-mass
halos that are unaffected by pressure. This can explain why
the simulation with the E-δ ICs produced the highest baryon
fraction in high-mass halos (see the top panel of Figure 4).
However, when we consider the differences between large
and small scales, the high baryon perturbations produce a
large pressure term, increasing the effect of pressure relative
to gravity and producing a higher filtering mass in the E-δ
model than in the fid model. Note that the filtering mass is
particularly sensitive to the importance of pressure at the
very highest redshifts (above 100), since at lower redshifts
the gas cools and the Jeans mass decreases, reducing the
contribution of these redshifts to the final filtering mass.

We note that in Naoz & Barkana (2007) the calculation
of the filtering mass in the fiducial model was compared to
the time integrated filtering mass in a model that assumes
the mean speed of sound model, neglects the rLSS factor,
and starts out with initial conditions as in the E-δ model.
Here, we have separated our discussion into several different
cases.

4.2.2 The non-linear characteristic mass

There is no apriori reason to think that the filtering mass
can also accurately describe properties of highly non-linear,
virialized objects. For halos, Gnedin (2000) defined a char-
acteristic mass Mc for which a halo contains half the mean
cosmic baryon fraction fb. In his simulation he found the
mean gas fraction in halos of a given total mass M , and
fitted the simulation results to the following formula:

fg,calc = fb,0

[
1 +

(
2α/3 − 1

)(Mc

M

)α
]−3/α

, (12)

where fb,0 is the gas fraction in the high-mass limit. In this
function, a higher α causes a sharper transition between
the high-mass (constant fg) limit and the low-mass limit
(assumed to be fg ∝ M3). Gnedin (2000) found a good fit
for α = 1, with a characteristic mass that in fact equaled
the filtering mass by his definition. By our definition, the
claim from Gnedin (2000) is that Mc = 8×MF .

Naoz, Barkana & Mesinger (2009) found that, given
their errors, the filtering mass from linear theory is con-
sistent with the characteristic mass fitted from the simula-
tions, for two (pre-reionization) scenarios that they tested:
the NoUV case (i.e., no stellar heating) and the Flash case
(i.e., after a sudden flash of stellar heating). For clarity, we
emphasize that this statement (Mc = MF ) refers to our
definition of MF in equation (11).

The characteristic mass is essentially a non-linear ver-
sion of the filtering mass, and so it also measures the compe-
tition between gravity and pressure. At high masses, where
pressure is unimportant, fg → fb,0, while the low mass tail
is determined by the suppression of gas accretion caused by
high baryonic pressure.

4.2.3 Comparison between the simulation and the
theoretical predictions

A major conclusion of the simulation results is that differ-
ent ICs result in different gas fractions in the final halos.
Specifically, we measure these differences through the char-
acteristic mass at various redshifts. varies for different ICs.
We determine for each simulation output the characteris-
tic mass and the parameter α using a two-dimensional fit to
equation (12), with fb,0 separately fixed to equal the average
of the highest few mass bins (see Appendix B for a complete
description of the fitting process, together with the 1 − σ
errors). In figure 4 we show fb,0, α and Mc, for all the simu-
lated cases. The characteristic mass clearly depends on the
initial conditions, with the mean cs model and E-δ model
both yielding gas suppression at systematically higher halo
masses then for the fid model. The parameter α shows a less
clear pattern with redshift, but it is generally lowest for the
fid model. Overall, the most important implication is that
the gas fraction in halos is highly sensitive to the assumed
initial conditions.

Comparing to linear theory allows us to understand
some of these results. As noted in section 4.2.1, we calcu-
lated the filtering mass from linear theory for each of the
ICs, and the linear calculation allows us to understand the
relative importance of pressure in the various IC models,
at least during the linear evolution. Although the simula-
tion results come from non-linear, viralized halos, we find
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Figure 4. The parameters of the best fits in the form of equa-
tion 12; different panels show Mc, α, and fb,0. We consider the
fiducial calculation, mean cs approximation and the E-δ model
(boxes, triangles and circles, respectively), where we fit equa-
tion (12) to all data points from halos with at least 500 particles.
In the bottom panel we also show the analytical calculation fol-
lowing Naoz & Barkana (2007), for all the models, assuming the
same ICs as in the simulations (solid, dashed and dotted curves
for fid, mean cs and E-δ, respectively). We note that at 1+z = 13
the mean cs and the E-δ models have the same value of Mc, and
that the fid model and the E-δ overlap at 1+z = 17. We also note
that the data for 1 + z = 14 was unavailable due to a computer
failure.

an approximate agreement (typically to within ∼ 20%) be-
tween the filtering mass, as defined here and in our previous
work (Naoz, Barkana & Mesinger 2009; Naoz & Barkana
2007), and the characteristic mass as measured in the sim-
ulation, for all the models. In particular, the relative sizes
of Mc among the various models, and the slow decline of
all the characteristic masses with time, are well matched by
the corresponding MF values predicted from linear theory.
This close match can be understood from the fact that while
both gravity and pressure increase during the non-linear evo-
lution, their relative strength only changes by a relatively
small factor as a halo undergoes non-linear collapse and viri-
alization. Halos in which pressure had a large effect during
the early, linear evolution stage, keep sufficient pressure to
maintain the suppressed baryon content all through the fi-
nal collapse. On the other hand, in more massive halos in
which gravity overcame pressure early on, the baryons keep
up with the collapse of the dark matter and the pressure
never has a major role.

For the E-δ alternative model, we find that the resulting
characteristic mass is higher than the result in the fid model.
Specifically, at z = 20 we find Mc ∼ 5×104 M! and α ∼ 1).
This can be understood since setting the gas fluctuations to
be equal to the dark matter’s means that the pressure of
the gas is higher compared to the fid model. As can also be
seen from comparison to linear theory, the system retains the

memory of the pressure, due to the time integrated nature of
the filtering mass. Therefore, the higher pressure translates
to a higher filtering/characteristic mass.

The mean cs approximation starts with effectively
smoother ICs than in the fid model (∼ 20% underestimate of
the small-scale baryon overdensity). Thus, the baryonic com-
ponents lag behind the dark matter collapse, and the pres-
sure is always overestimated for a given baryon overdensity
(due to the overestimated temperature fluctuations), result-
ing in a lower gas fraction for any given halo mass, i.e., the
characteristic mass is higher than in the fid model. Specifi-
cally, at z = 20 we find Mc ∼ 7 × 104 M! and α ∼ 1. This
can be compared with Mc ∼ 3 × 104 M! and α ∼ 0.6 for
the fid ICs.

Recently, Hoeft et al. (2006) and Okamoto, Gao, & The-
uns (2008) showed that the characteristic mass scale does
not agree with the Gnedin & Hui (1998) filtering mass in the
low-redshift, post-reionization regime. However, it is impor-
tant to note that at these low redshifts, the heating/cooling
and other feedback mechanisms are complex and highly in-
homogeneous, so that the “filtering mass” calculated from
linear theory is not really precisely defined, and the compar-
ison of the linear and non-linear results cannot really be con-
sidered a direct and precise test. In contrast, Naoz, Barkana
& Mesinger (2009) found that the filtering mass gives a good
approximation to the characteristic mass, even in the pres-
ence of a ”flash” heating event (see also Mesinger, Bryan
& Haiman 2006) that is physically somewhat contrived but
allows for a clear comparison of the linear and non-linear
results.

Summarizing our results, we find a good agreement be-
tween the characteristic mass and the filtering mass in all the
models. Figure 4 shows the best fitted parameters at various
redshifts for Mc and α, and our value for fb,0, for all models
(the 1-σ (68%) confidence regions are listed in table B1). It
is important to emphasize that in this statement we are re-
ferring to our definition in equation (11), which is one eighth
of the original definition which Gnedin (2000) claimed was
a good fit to the characteristic mass. While we have been
careful to select halos with at least 500 particles, based on
the results of Naoz, Barkana & Mesinger (2009), we do not
have the even higher mass resolution needed to perform a
resolution convergence test as they did. Our main conclusion
is that at least in the redshift range z = 11−21 the filtering
mass provides a fairly good estimate for the characteristic
mass. This extends the redshift range of the agreement be-
tween the filtering mass and the characteristic mass found
in Naoz, Barkana & Mesinger (2009) (z = 20−25). Another
significant result from this agreement is that previous work
(either analytical, semi-analytical, or using simulations) that
used the filtering or characteristic mass without accounting
for the correct initial conditions resulted in inaccurate re-
sults. This is due to the significant (factor of 2–3) variation
among the predictions of the filtering/characteristic mass in
the various models. Since this mass scale is of prime impor-
tance in early structure formation it is imperative to calcu-
late it accurately.
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Figure 7. The parameters of the best fits in the form of equa-
tion 3; different panels show Mc, α, and fb,0. We consider the
Flash (crosses) and NoUV (filled squares) cases, where we fit
equation 3 to all data points from halos with Nh ! 500. For
comparison we also show the Mc values derived directly from in-
terpolating the binned data, without assuming a fitting function
(dotted curves in the bottom panel; bottom: NoUV, top: Flash
scenario). In the bottom panel we also show the analytical calcu-
lation according to Naoz & Barkana (2007), assuming the same
initial conditions as in the simulations (short-dashed curves; bot-
tom: NoUV, top: Flash). The full calculation assuming the true
initial conditions as in Naoz & Barkana (2007) is also shown for
the NoUV case (long-dashed curve). We note that the NoUV and
Flash cases mostly overlap in the top panel, which also shows the
cosmic mean baryon fraction (horizontal dotted line).

the radiative cooling was eliminated, leaving only adiabatic
cooling and Compton heating. We found that the gas frac-
tions (and thus the fitted characteristic mass) did not change
significantly, and thus verified that radiative cooling has a
negligible effect on our results.

We find that, given our systematic errors, the filtering
mass from linear theory is consistent with the characteris-
tic mass fitted from the simulations for both the NoUV and
the Flash cases4. It is important to emphasize that in this
statement we are referring to our definition in equation (2),
which is one eighth of the original definition which Gnedin
(2000) claimed was a good fit to the characteristic mass.
In any case, we conclude that at least in a particular red-
shift range (z = 20− 25) the filtering mass provides a fairly
good estimate to the characteristic mass, either before stel-
lar heating or in its initial stages. Since we have not probed
a larger range of redshifts, we cannot generalize this conclu-
sion. Also, the large systematic errors (particularly in the
Flash case) reduce the significance of the above conclusion.

In Figure 7 we also show the filtering mass from the full

4 We note that equation (3) is successful in giving a reduced χ2
of order unity in all cases except one (see Table 2).

calculation of Naoz & Barkana (2007) assuming the correct
initial conditions (see figure 1 of Naoz & Barkana 2005),
in the NoUV case. The correct initial conditions cannot be
fully directly incorporated in a simulation without starting
at much higher redshifts than simulators are used to. In
particular, these initial conditions include the fact that at
z = 1200 the baryons are still essentially uniform (on scales
relevant for galactic halos) due to their just ended strong
coupling to the CMB photons. Based on the agreement we
have found between the linear theory and the simulations
for the case of the simulations’ initial conditions, we suggest
that we can estimate the real characteristic mass in the uni-
verse based on our analytical filtering mass calculation with
the true initial conditions.

There are several differences between our simulations’
initial conditions and the true ones. The initial conditions in
the simulations assumed a lower temperature5 (by ∼ 30% at
zinit = 99) than the exact calculation with Compton heat-
ing, resulting in lower gas pressure and thus a lower filtering
mass than in the full analytical calculation. The assump-
tion that the baryon perturbations follow the dark matter at
zinit = 99 creates tendencies to both raise the filtering mass
(since the baryon fraction, and thus the gas pressure, is too
high within perturbations) and lower it (since the filtering
mass reflectes the integrated effect of pressure, and the in-
tegral is only begun at zinit = 99 instead of at z = 1200).
Also, we note that the best-known cosmological parameters
are slightly different from those in our simulation, i.e., in our
analytical calculation we use those of Spergel et al. (2007):
(ΩΛ, ΩM, Ωb, n, σ8, H0) = (0.701, 0.299, 0.0478, 0.957, 0.82,
68.7 km s−1 Mpc−1). However, changing the cosmological
parameters does not play an important role. This is because
the definition of the filtering mass is independent of σ8 which
is the major difference in the cosmological parameters. Thus,
we conclude that the true minimum mass needed for a halo
to keep at least half of its baryons, in the era before stel-
lar heating (i.e., corresponding to the NoUV case), is about
2.7 × 104 M" at z ∼ 20 − 25.

Finally, we can also use our simulations to look beyond
the tight fg(M) relation of equation (3), and consider the
distribution of gas fractions for a given halo mass. Gnedin
(2000) showed that this distribution in the simulation is well
approximated as a lognormal distribution. Performing the
same analysis for the NoUV scenario, we find the same, as
shown in Figure 8. Since we have a limited number of halos,
we collect all of our data at each redshift and consider the
ratio between the measured fg and that predicted by equa-
tion (3) with the best-fit parameters. Thus, we assume that
this relative distribution does not vary strongly with halo
mass. Since it is easier to deal with a normal distribution,
we plot the distribution of ln(fg/fg,calc) and fit to it a nor-
mal distribution with mean µ and standard deviation σ. We
show the best-fit parameter values with their 1-σ confidence
ranges in Table 3.

5 We note that we started with simulations that were initially
run by Mesinger, Bryan & Haiman (2006) and then ran addi-
tional simulations in order to reach numerical convergence. The
crucial point for our comparison test is that we calculated the
filtering mass with precisely the same initial conditions as in the
simulations.
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to the baryon ICs
★Use linear theory to understand non-linear 
behavior
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The Linear Regime: The Stream Velocity 

 vb ≠ vdm (Tseliakhovich & Hirata 2010)

Second order correction in linear perturbations theory:
Baryons’s peculiar velocity differ from the dark matter 

at the time of recombination Growth of Linear Perturbations before the Era of the First Galaxies 3

Figure 1. Power spectra of density and temperature fluctu-
ations vs. comoving wavenumber, at redshifts 1200, 800, 400,
and 200. We consider fluctuations in the CDM density (solid
curves), baryon density (dotted curves), baryon temperature
(short-dashed curves), and photon temperature (long-dashed
curves).

but the thermal coupling remains strong, i.e., the coefficient
of the coupling term in equation (8) remains very large, and
it is numerically highly inefficient to solve this equation di-
rectly. We instead develop a simple approximation that may
be used during this era of thermal tight coupling. First we
write the expression for d(δT − δTγ )/dt using equation (8)
along with the expression for dδTγ /dt as computed by CMB-
FAST. As long as the thermal coupling is effective, the dif-
ference δT − δTγ is very small, i.e., |δT − δTγ | " |δb|, so that
the various terms in the expression for d(δT − δTγ )/dt must
cancel each other nearly completely. Since this expression
depends on δT [see the right-hand side of equation (8)], we
simply set δT to the value that yields d(δT −δTγ )/dt ≡ 0. We
have checked that using this approximation down to z = 900
affects the power spectra by a fraction of a percent at most.

For the concordance set of cosmological parameters
(Spergel et al. 2003), with a scale-invariant primordial power
spectrum normalized to σ8 = 0.9 at z = 0, Figure 1 com-
pares the magnitude of the fluctuations in the CDM and
baryon densities, and in the baryon and photon temper-
atures. For each quantity, the plot shows the dimension-
less combination [k3P (k)/(2π2)]1/2, where P (k) is the corre-
sponding power spectrum of fluctuations. Note that regions
where the fluctuations oscillate in sign (as a function of k)
are difficult to show precisely in such a plot (e.g., the pho-
tons and baryons at k = 0.01–1 Mpc−1 at z = 1200, and
the baryon temperature at k > 1000 Mpc−1 at z = 400).
Note also that the photon temperature perturbations as
shown are simply 1/4 of the photon density perturbations
[see eq. (1)].

After recombination, two main forces affect the baryon
density and temperature fluctuations, namely, the thermal-

ization with the CMB and the gravitational force that at-
tracts the baryons to the dark matter potential wells. As
shown in the figure, the density perturbations in all species
grow together [except that δγ = (4/3)δb] on scales where
gravity is unopposed, outside the horizon (i.e., at k ! 0.01
Mpc−1 at z ∼ 1000). At z = 1200 the perturbations in
the baryon-photon fluid oscillate as acoustic waves on scales
of order the sound horizon (k ∼ 0.01), while smaller-scale
perturbations in both the photons and baryons are damped
by photon diffusion (Silk damping) and the drag of the dif-
fusing photons on the baryons. Since the initial dark matter
density perturbations increase with k, while the photon per-
turbations are damped on the smallest scales by photon free
streaming, on sufficiently small scales the power spectra of δb

and δT roughly assume the shape of the dark matter fluctu-
ation δdm (except for the gas-pressure cutoff at the smallest
scales), due to the effect of gravitational attraction on δb

and of the resulting adiabatic expansion on δT .
This evolution involves two similar physical systems.

In each case, a target perturbation δ0 is driven toward one
perturbation δ1, but this forcing is opposed by coupling to
a second perturbation δ2. The values of δ1 and δ2 are com-
parable on large scales but |δ2| " |δ1| on small scales. As
long as the coupling is strong, δ0 ≈ δ2 on large scales, while
the effect of δ1 is apparent in the form of δ0 on small scales
although the coupling maintains |δ0| " |δ1|. After the cou-
pling weakens, the perturbation δ0 is free to begin rising
toward δ1, but this rise occurs only gradually. In the first
case, δ0 = δb is driven by gravity toward δ1 = δdm, while
mechanical coupling to δ2 = δγ is the opposing force. In the
second case, δ0 = δT is driven by adiabatic expansion toward
δ1 = 2

3 δb, with resistance provided by thermal coupling to
δ2 = δTγ . The mechanical coupling ends at z ∼ 1000 while
the thermal coupling is over by z ∼ 200.

The Figure also shows that the thermal tight-coupling
approximation is accurate at the highest redshifts shown, on
large scales since |δT − δTγ | " |δTγ | < |δb|, while on small
scales δT and δTγ are not strongly coupled but each is indi-
vidually very small compared to δb. Even at somewhat lower
redshifts, δb " δdm and δT " δb on sub-horizon scales. By
z = 200 the baryon infall into the dark matter potentials is
well advanced and adiabatic expansion is becoming increas-
ingly important in setting the baryon temperature. By this
redshift, the photon perturbations are already negligible at
k " 0.01 Mpc−1, justifying their neglect by Barkana & Loeb
(2005c) on these scales.

3 GROWTH OF SMALL SCALE DENSITY

PERTURBATIONS

On small scales (i.e., at large wavenumbers) the baryon
perturbation growth is affected by the pressure of the gas,
which affects the dark matter as well since the baryons con-
tribute a small but significant fraction of the total gravita-
tional force. The evolution of sub-horizon linear perturba-
tions is described by two coupled second-order differential
equations. The dark matter feels the combined gravity of
itself and the baryons:

δ̈dm + 2H δ̇dm =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) , (9)
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Figure 1. Power spectra of density and temperature fluctu-
ations vs. comoving wavenumber, at redshifts 1200, 800, 400,
and 200. We consider fluctuations in the CDM density (solid
curves), baryon density (dotted curves), baryon temperature
(short-dashed curves), and photon temperature (long-dashed
curves).

but the thermal coupling remains strong, i.e., the coefficient
of the coupling term in equation (8) remains very large, and
it is numerically highly inefficient to solve this equation di-
rectly. We instead develop a simple approximation that may
be used during this era of thermal tight coupling. First we
write the expression for d(δT − δTγ )/dt using equation (8)
along with the expression for dδTγ /dt as computed by CMB-
FAST. As long as the thermal coupling is effective, the dif-
ference δT − δTγ is very small, i.e., |δT − δTγ | " |δb|, so that
the various terms in the expression for d(δT − δTγ )/dt must
cancel each other nearly completely. Since this expression
depends on δT [see the right-hand side of equation (8)], we
simply set δT to the value that yields d(δT −δTγ )/dt ≡ 0. We
have checked that using this approximation down to z = 900
affects the power spectra by a fraction of a percent at most.

For the concordance set of cosmological parameters
(Spergel et al. 2003), with a scale-invariant primordial power
spectrum normalized to σ8 = 0.9 at z = 0, Figure 1 com-
pares the magnitude of the fluctuations in the CDM and
baryon densities, and in the baryon and photon temper-
atures. For each quantity, the plot shows the dimension-
less combination [k3P (k)/(2π2)]1/2, where P (k) is the corre-
sponding power spectrum of fluctuations. Note that regions
where the fluctuations oscillate in sign (as a function of k)
are difficult to show precisely in such a plot (e.g., the pho-
tons and baryons at k = 0.01–1 Mpc−1 at z = 1200, and
the baryon temperature at k > 1000 Mpc−1 at z = 400).
Note also that the photon temperature perturbations as
shown are simply 1/4 of the photon density perturbations
[see eq. (1)].

After recombination, two main forces affect the baryon
density and temperature fluctuations, namely, the thermal-

ization with the CMB and the gravitational force that at-
tracts the baryons to the dark matter potential wells. As
shown in the figure, the density perturbations in all species
grow together [except that δγ = (4/3)δb] on scales where
gravity is unopposed, outside the horizon (i.e., at k ! 0.01
Mpc−1 at z ∼ 1000). At z = 1200 the perturbations in
the baryon-photon fluid oscillate as acoustic waves on scales
of order the sound horizon (k ∼ 0.01), while smaller-scale
perturbations in both the photons and baryons are damped
by photon diffusion (Silk damping) and the drag of the dif-
fusing photons on the baryons. Since the initial dark matter
density perturbations increase with k, while the photon per-
turbations are damped on the smallest scales by photon free
streaming, on sufficiently small scales the power spectra of δb

and δT roughly assume the shape of the dark matter fluctu-
ation δdm (except for the gas-pressure cutoff at the smallest
scales), due to the effect of gravitational attraction on δb

and of the resulting adiabatic expansion on δT .
This evolution involves two similar physical systems.

In each case, a target perturbation δ0 is driven toward one
perturbation δ1, but this forcing is opposed by coupling to
a second perturbation δ2. The values of δ1 and δ2 are com-
parable on large scales but |δ2| " |δ1| on small scales. As
long as the coupling is strong, δ0 ≈ δ2 on large scales, while
the effect of δ1 is apparent in the form of δ0 on small scales
although the coupling maintains |δ0| " |δ1|. After the cou-
pling weakens, the perturbation δ0 is free to begin rising
toward δ1, but this rise occurs only gradually. In the first
case, δ0 = δb is driven by gravity toward δ1 = δdm, while
mechanical coupling to δ2 = δγ is the opposing force. In the
second case, δ0 = δT is driven by adiabatic expansion toward
δ1 = 2

3 δb, with resistance provided by thermal coupling to
δ2 = δTγ . The mechanical coupling ends at z ∼ 1000 while
the thermal coupling is over by z ∼ 200.

The Figure also shows that the thermal tight-coupling
approximation is accurate at the highest redshifts shown, on
large scales since |δT − δTγ | " |δTγ | < |δb|, while on small
scales δT and δTγ are not strongly coupled but each is indi-
vidually very small compared to δb. Even at somewhat lower
redshifts, δb " δdm and δT " δb on sub-horizon scales. By
z = 200 the baryon infall into the dark matter potentials is
well advanced and adiabatic expansion is becoming increas-
ingly important in setting the baryon temperature. By this
redshift, the photon perturbations are already negligible at
k " 0.01 Mpc−1, justifying their neglect by Barkana & Loeb
(2005c) on these scales.

3 GROWTH OF SMALL SCALE DENSITY

PERTURBATIONS

On small scales (i.e., at large wavenumbers) the baryon
perturbation growth is affected by the pressure of the gas,
which affects the dark matter as well since the baryons con-
tribute a small but significant fraction of the total gravita-
tional force. The evolution of sub-horizon linear perturba-
tions is described by two coupled second-order differential
equations. The dark matter feels the combined gravity of
itself and the baryons:

δ̈dm + 2H δ̇dm =
3
2
H2

0
Ωm

a3
(fbδb + fdmδdm) , (9)
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Naoz & Barkana 2005

• |vb-vdm|≈30 km/sec at 
Recombination time

• scales as 1/a
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The Linear Regime: The Stream Velocity 

We may then average Eq. (12) to obtain a globally aver-
aged matter power spectrum.

Intuitively, we expect the relative velocity effect to sup-
press the small-scale power spectrum, since the moving
baryons have pressure !!bv

2
bc in the CDM frame. This

suppression is shown in Fig. 2 where we plot !2
mðkÞ $

½k3=ð2"2Þ&PmðkÞ for the cases with and without the effect
of relative velocity. The power is most strongly suppressed
around the Jeans scale kJ ¼ aH=cs ! 200 Mpc(1, where a
difference of !15% is computed.

The effect of vbc is not limited to the suppression of
power on small scales, but rather has an important impli-
cation for the distribution of the first bound structures with
respect to matter distribution as well as for the number
densities of the first halos. To study these effects we ran a
set of simulations in which the large-scale density and
velocity fields were generated according to linear pertur-
bation theory. We then used analytical (Press-Schechter)
arguments to predict the number of haloes formed in each
cell of our cosmological box. This hybrid approach is
computationally feasible on a single desktop computer
since it does not have to numerically follow the small-scale
modes, and should capture the rough magnitude of the
effect. However, ultimately a simulation that follows the
full nonlinear evolution of the small-scale modes will be
required. The key reason for using approximate methods in
the present study, as opposed to a full hydrodynamic
numerical simulation, is our desire to introduce the concept
of relative velocity effect in the simplest and most intuitive
way while allowing more detailed study to be performed
by other research groups in an unbiased manner.

III. THE ABUNDANCE AND CLUSTERING OF
EARLY HALOES

We now investigate the formation of the first baryonic
objects, taking account of the relative velocity effect. This
is a difficult problem, which we only partially solve in this

paper: one has acoustic oscillations in the photon-baryon
plasma that travel !140 Mpc, and simultaneously one
must resolve the baryon Jeans scale. We provide a compu-
tation based on the formalism described above: we gener-
ate a realization of a Gaussian random primordial
perturbation on a 3D grid, and then to each cell we assign
an overdensity #l (where the ‘‘l’’ refers to long-wavelength
modes) using periodic boundary condition and a relative
velocity vbc derived from the linear density field. Initial
values of #l are obtained using the linear perturbation
theory, as there is no significant difference between the
theory with and without relative motion effect before the
time of recombination when the values of #l are formed.
Then, within each cell, we use the peak-background split to
compute the number density of haloes. The new twist is
that the small-scale power spectrum is modulated by the
large-scale vbc. (In some ways, this is similar to the modi-
fication of the peak-background split used for local
fNL-type non-Gaussianity studies [43,44], except that in
our case the modulation of the small-scale power spectrum
is a result of the advection process and arises even in
standard"CDM cosmology with Gaussian adiabatic initial
conditions.) This of course depends on an analytic model
for the halo mass function; we have used the Press-
Schechter model [16,17]. The validity of Press-Schechter
for any precise calculation is dubious—particularly since it
is being applied here with an anisotropic local power
spectrum—but we expect that the qualitative results (a
scale-dependent enhancement in the bias and stochasticity
at large scales, with acoustic oscillations in each) would
still arise in a more accurate treatment.

A. Peak-background split

The collapse of the first halos can be conveniently
treated in the framework of the peak-background split
formalism [45], in which the growth of small-scale inho-
mogeneities depends on the large-scale overdensity. One
can split the density field into a long-wavelength piece #l

and a short-wavelength piece #s:

!ðxÞ ¼ #!½1þ #lðxÞ þ #sðxÞ&: (14)

In any region, the number density of haloes of any given
type generally depends on the large-scale overdensity #l,
and on the statistics of the small-scale perturbations #s (in
particular, their local power spectrum). In the usual case
where the small and large-scale perturbations are indepen-
dent, the number density becomes purely a function of the
large-scale overdensity plus a stochastic component $ with
h$ðxÞi ¼ 0; Taylor-expanding in #l gives

nðxÞ ¼ #n½1þ b0#lðxÞ& þ $ðxÞ: (15)

The bias is then

b0 ¼ #n(1 @n

@#l
: (16)
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FIG. 2. Power spectrum of matter distribution in the first order
CDM model (solid line) and with the vbc effect included (dashed
line) at the redshift of z ¼ 40.

RELATIVE VELOCITY OF DARK MATTER AND BARYONIC . . . PHYSICAL REVIEW D 82, 083520 (2010)

083520-5

We may then average Eq. (12) to obtain a globally aver-
aged matter power spectrum.

Intuitively, we expect the relative velocity effect to sup-
press the small-scale power spectrum, since the moving
baryons have pressure !!bv

2
bc in the CDM frame. This

suppression is shown in Fig. 2 where we plot !2
mðkÞ $

½k3=ð2"2Þ&PmðkÞ for the cases with and without the effect
of relative velocity. The power is most strongly suppressed
around the Jeans scale kJ ¼ aH=cs ! 200 Mpc(1, where a
difference of !15% is computed.

The effect of vbc is not limited to the suppression of
power on small scales, but rather has an important impli-
cation for the distribution of the first bound structures with
respect to matter distribution as well as for the number
densities of the first halos. To study these effects we ran a
set of simulations in which the large-scale density and
velocity fields were generated according to linear pertur-
bation theory. We then used analytical (Press-Schechter)
arguments to predict the number of haloes formed in each
cell of our cosmological box. This hybrid approach is
computationally feasible on a single desktop computer
since it does not have to numerically follow the small-scale
modes, and should capture the rough magnitude of the
effect. However, ultimately a simulation that follows the
full nonlinear evolution of the small-scale modes will be
required. The key reason for using approximate methods in
the present study, as opposed to a full hydrodynamic
numerical simulation, is our desire to introduce the concept
of relative velocity effect in the simplest and most intuitive
way while allowing more detailed study to be performed
by other research groups in an unbiased manner.

III. THE ABUNDANCE AND CLUSTERING OF
EARLY HALOES

We now investigate the formation of the first baryonic
objects, taking account of the relative velocity effect. This
is a difficult problem, which we only partially solve in this

paper: one has acoustic oscillations in the photon-baryon
plasma that travel !140 Mpc, and simultaneously one
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• |vb-vdm|≈30 km/sec at 
Recombination time

• scales as 1/a

 vb ≠ vdm (Tseliakhovich & Hirata 2010)

Second order correction in linear perturbations theory:
Baryons’s peculiar velocity differ from the dark matter 

at the time of recombination 

z=40

 vb ≠ vdm

 vb = vdm
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Suppression and Spatial Variation of Early Galaxies and Minihalos 3

The system of equations describing a high-k perturbation
mode in the presence of a background relative velocity is

∂δc
∂t

=
i
a
v
(bg)
bc · kδc − θc,

∂θc
∂t

=
i
a
v
(bg)
bc · kθc −

3H2

2
(Ωcδc + Ωbδb)− 2Hθc,

∂δb
∂t

= −θb, and

∂θb
∂t

= −3H2

2
(Ωcδc +Ωbδb)− 2Hθb +

c2sk
2

a2
δb. (5)

The vbc terms are nominally second order in perturba-
tion theory, and hence one may wonder why they, rather
than other second-order terms, are included. The reason is
that the expansion parameter for these terms is not the den-
sity perturbation δ, but rather the ratio of the advection
terms (e.g. v(bg)bc kδc/a in the δc equation) to the linear terms
(e.g. ∂δc/∂t ∼ δc/H). This ratio is

v(bg)bc k

aH
. (6)

One can see that this expansion parameter increases as one
goes to smaller scales and is of order unity at k ∼ kvbc.
Thus the vbc terms become nonperturbative at small scales
k > kvbc, and when treating these small scales one must
keep these terms even if they are formally higher order in
the perturbation theory.

2.2 Complete heating model

The system of equations of Eq. (5) assumes a spatially uni-
form sound speed which is a good first-order approximation.
However, as shown in Naoz & Barkana (2005), it underesti-
mates baryon density fluctuations by more than 30 percent
at z = 100 and 10 percent at z = 20 for large wavenum-
bers. A fully correct treatment of baryon density evolution
requires analysis of the Compton heating from the CMB on
the sound speed and fluctuations in the temperature distri-
bution. Following Naoz & Barkana (2005), we re-write the
sound speed term of the last equation of Eq. (5) as

c2sk
2

a2
δb → k2

a2

kB T̄
c2µmH

(δb + δT), (7)

where δT is the temperature perturbation which evolves as:

dδT
dt

=
2
3
dδb
dt

+
xe(t)
tγ

a−4

{

δγ

(

T̄γ

T̄
− 1

)

+
T̄γ

T̄

(

δTγ − δT
)

}

.

(8)
The second term on the right-hand side accounts for the
Compton scattering of the CMB photons on the residual
electrons from recombination. Here xe(t) is the electron frac-
tion relative to the total number density of gas particles2,
T̄γ = [2.725 K]/a is the mean CMB temperature, and

t−1
γ ≡ 8

3
ρ0γ

σT c
me

= 8.55× 10−13yr−1, (9)

2 This is different from the recombination literature, which often
takes xe to be normalized to the number of hydrogen nuclei. At
low redshifts these differ by 8 per cent due to the presence of
helium.

where σT is the Thomson scattering cross section, ρ0γ is the
photon energy density at z = 0, and T̄ is the average tem-
perature of the baryons, which can be calculated using the
first law of thermodynamics:

dT̄
dt

= −2HT̄ +
xe(t)
tγ

(T̄γ − T̄ ) a−4. (10)

Accounting for Compton heating of the residual electrons
by the CMB photons is especially important on small scales
(k > 1 Mpc−1), which are also impacted by the relative
motion effect.

3 FIRST HALOS AND THEIR GAS CONTENT

Both of the effects discussed above have a significant impact
on the evolution of density perturbations on small scales and
affect the formation of the first dark matter halos, as well as
the subsequent accretion of the baryons and the formation of
the first stars. We investigate the specific effects by studying
the change in the characteristic mass scale that divides gas-
rich and gas-poor halos produced by the relative velocity of
the dark matter and baryonic fluids.

3.1 Filtering mass

In the ΛCDM universe, virialized dark matter halos form
hierarchically on extremely small scales at very early times
and start accreting baryons into their potential wells. If ha-
los are heavy enough, accretion proceeds to the point where
baryons start cooling through molecular line emission, con-
densing into the first stars and galaxies. This accretion is
counteracted by the bulk motion of baryons with respect
to dark matter as well as by the thermal gas pressure. The
combination of the two effects leads to the presence of the
minimal halo mass scale at which baryons are still able to
effectively accrete onto a halo.

To study the effect of halo formation and baryonic ac-
cretion it is convenient to divide space into a large number
of patches of the size of the relative velocity coherence scale.
In each patch with a given mean density and bulk velocity,
we follow the evolution of density perturbations including
the spatial variation of the baryonic speed of sound due to
Compton heating from the CMB (Naoz & Barkana 2005).

By evolving the system of equations (5) with the cor-
rect sound speed term of Eq. (7) in each patch, we calcu-
late the baryonic and dark matter power spectra. Their ra-
tio is constant on large scales (small k), and drops at high
k due to the suppression of growth by the baryonic pres-
sure. Gnedin & Hui (1998) originally defined a “filtering”
scale (essentially a time-averaged Jeans scale) that they used
to identify the largest scale on which the baryon fluctu-
ations are substantially suppressed compared to those of
the dark matter. We use the generalized definition from
Naoz & Barkana (2007), in which the baryon-to-total ratio
is expanded to linear order in k2, and written in the follow-
ing form:

δb
δtot

= 1− k2

k2
F

+ rLSS, (11)

where the total density perturbation δtot = fbδb + fdmδdm
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The system of equations describing a high-k perturbation
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The vbc terms are nominally second order in perturba-
tion theory, and hence one may wonder why they, rather
than other second-order terms, are included. The reason is
that the expansion parameter for these terms is not the den-
sity perturbation δ, but rather the ratio of the advection
terms (e.g. v(bg)bc kδc/a in the δc equation) to the linear terms
(e.g. ∂δc/∂t ∼ δc/H). This ratio is

v(bg)bc k
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. (6)

One can see that this expansion parameter increases as one
goes to smaller scales and is of order unity at k ∼ kvbc.
Thus the vbc terms become nonperturbative at small scales
k > kvbc, and when treating these small scales one must
keep these terms even if they are formally higher order in
the perturbation theory.

2.2 Complete heating model

The system of equations of Eq. (5) assumes a spatially uni-
form sound speed which is a good first-order approximation.
However, as shown in Naoz & Barkana (2005), it underesti-
mates baryon density fluctuations by more than 30 percent
at z = 100 and 10 percent at z = 20 for large wavenum-
bers. A fully correct treatment of baryon density evolution
requires analysis of the Compton heating from the CMB on
the sound speed and fluctuations in the temperature distri-
bution. Following Naoz & Barkana (2005), we re-write the
sound speed term of the last equation of Eq. (5) as

c2sk
2

a2
δb → k2

a2

kB T̄
c2µmH

(δb + δT), (7)

where δT is the temperature perturbation which evolves as:

dδT
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The second term on the right-hand side accounts for the
Compton scattering of the CMB photons on the residual
electrons from recombination. Here xe(t) is the electron frac-
tion relative to the total number density of gas particles2,
T̄γ = [2.725 K]/a is the mean CMB temperature, and

t−1
γ ≡ 8

3
ρ0γ

σT c
me

= 8.55× 10−13yr−1, (9)

2 This is different from the recombination literature, which often
takes xe to be normalized to the number of hydrogen nuclei. At
low redshifts these differ by 8 per cent due to the presence of
helium.

where σT is the Thomson scattering cross section, ρ0γ is the
photon energy density at z = 0, and T̄ is the average tem-
perature of the baryons, which can be calculated using the
first law of thermodynamics:

dT̄
dt

= −2HT̄ +
xe(t)
tγ

(T̄γ − T̄ ) a−4. (10)

Accounting for Compton heating of the residual electrons
by the CMB photons is especially important on small scales
(k > 1 Mpc−1), which are also impacted by the relative
motion effect.

3 FIRST HALOS AND THEIR GAS CONTENT

Both of the effects discussed above have a significant impact
on the evolution of density perturbations on small scales and
affect the formation of the first dark matter halos, as well as
the subsequent accretion of the baryons and the formation of
the first stars. We investigate the specific effects by studying
the change in the characteristic mass scale that divides gas-
rich and gas-poor halos produced by the relative velocity of
the dark matter and baryonic fluids.

3.1 Filtering mass

In the ΛCDM universe, virialized dark matter halos form
hierarchically on extremely small scales at very early times
and start accreting baryons into their potential wells. If ha-
los are heavy enough, accretion proceeds to the point where
baryons start cooling through molecular line emission, con-
densing into the first stars and galaxies. This accretion is
counteracted by the bulk motion of baryons with respect
to dark matter as well as by the thermal gas pressure. The
combination of the two effects leads to the presence of the
minimal halo mass scale at which baryons are still able to
effectively accrete onto a halo.

To study the effect of halo formation and baryonic ac-
cretion it is convenient to divide space into a large number
of patches of the size of the relative velocity coherence scale.
In each patch with a given mean density and bulk velocity,
we follow the evolution of density perturbations including
the spatial variation of the baryonic speed of sound due to
Compton heating from the CMB (Naoz & Barkana 2005).

By evolving the system of equations (5) with the cor-
rect sound speed term of Eq. (7) in each patch, we calcu-
late the baryonic and dark matter power spectra. Their ra-
tio is constant on large scales (small k), and drops at high
k due to the suppression of growth by the baryonic pres-
sure. Gnedin & Hui (1998) originally defined a “filtering”
scale (essentially a time-averaged Jeans scale) that they used
to identify the largest scale on which the baryon fluctu-
ations are substantially suppressed compared to those of
the dark matter. We use the generalized definition from
Naoz & Barkana (2007), in which the baryon-to-total ratio
is expanded to linear order in k2, and written in the follow-
ing form:

δb
δtot

= 1− k2

k2
F

+ rLSS, (11)

where the total density perturbation δtot = fbδb + fdmδdm
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The system of equations describing a high-k perturbation
mode in the presence of a background relative velocity is
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The vbc terms are nominally second order in perturba-
tion theory, and hence one may wonder why they, rather
than other second-order terms, are included. The reason is
that the expansion parameter for these terms is not the den-
sity perturbation δ, but rather the ratio of the advection
terms (e.g. v(bg)bc kδc/a in the δc equation) to the linear terms
(e.g. ∂δc/∂t ∼ δc/H). This ratio is

v(bg)bc k

aH
. (6)

One can see that this expansion parameter increases as one
goes to smaller scales and is of order unity at k ∼ kvbc.
Thus the vbc terms become nonperturbative at small scales
k > kvbc, and when treating these small scales one must
keep these terms even if they are formally higher order in
the perturbation theory.

2.2 Complete heating model

The system of equations of Eq. (5) assumes a spatially uni-
form sound speed which is a good first-order approximation.
However, as shown in Naoz & Barkana (2005), it underesti-
mates baryon density fluctuations by more than 30 percent
at z = 100 and 10 percent at z = 20 for large wavenum-
bers. A fully correct treatment of baryon density evolution
requires analysis of the Compton heating from the CMB on
the sound speed and fluctuations in the temperature distri-
bution. Following Naoz & Barkana (2005), we re-write the
sound speed term of the last equation of Eq. (5) as
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(δb + δT), (7)

where δT is the temperature perturbation which evolves as:
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The second term on the right-hand side accounts for the
Compton scattering of the CMB photons on the residual
electrons from recombination. Here xe(t) is the electron frac-
tion relative to the total number density of gas particles2,
T̄γ = [2.725 K]/a is the mean CMB temperature, and

t−1
γ ≡ 8

3
ρ0γ

σT c
me

= 8.55× 10−13yr−1, (9)

2 This is different from the recombination literature, which often
takes xe to be normalized to the number of hydrogen nuclei. At
low redshifts these differ by 8 per cent due to the presence of
helium.

where σT is the Thomson scattering cross section, ρ0γ is the
photon energy density at z = 0, and T̄ is the average tem-
perature of the baryons, which can be calculated using the
first law of thermodynamics:

dT̄
dt

= −2HT̄ +
xe(t)
tγ

(T̄γ − T̄ ) a−4. (10)

Accounting for Compton heating of the residual electrons
by the CMB photons is especially important on small scales
(k > 1 Mpc−1), which are also impacted by the relative
motion effect.

3 FIRST HALOS AND THEIR GAS CONTENT

Both of the effects discussed above have a significant impact
on the evolution of density perturbations on small scales and
affect the formation of the first dark matter halos, as well as
the subsequent accretion of the baryons and the formation of
the first stars. We investigate the specific effects by studying
the change in the characteristic mass scale that divides gas-
rich and gas-poor halos produced by the relative velocity of
the dark matter and baryonic fluids.

3.1 Filtering mass

In the ΛCDM universe, virialized dark matter halos form
hierarchically on extremely small scales at very early times
and start accreting baryons into their potential wells. If ha-
los are heavy enough, accretion proceeds to the point where
baryons start cooling through molecular line emission, con-
densing into the first stars and galaxies. This accretion is
counteracted by the bulk motion of baryons with respect
to dark matter as well as by the thermal gas pressure. The
combination of the two effects leads to the presence of the
minimal halo mass scale at which baryons are still able to
effectively accrete onto a halo.

To study the effect of halo formation and baryonic ac-
cretion it is convenient to divide space into a large number
of patches of the size of the relative velocity coherence scale.
In each patch with a given mean density and bulk velocity,
we follow the evolution of density perturbations including
the spatial variation of the baryonic speed of sound due to
Compton heating from the CMB (Naoz & Barkana 2005).

By evolving the system of equations (5) with the cor-
rect sound speed term of Eq. (7) in each patch, we calcu-
late the baryonic and dark matter power spectra. Their ra-
tio is constant on large scales (small k), and drops at high
k due to the suppression of growth by the baryonic pres-
sure. Gnedin & Hui (1998) originally defined a “filtering”
scale (essentially a time-averaged Jeans scale) that they used
to identify the largest scale on which the baryon fluctu-
ations are substantially suppressed compared to those of
the dark matter. We use the generalized definition from
Naoz & Barkana (2007), in which the baryon-to-total ratio
is expanded to linear order in k2, and written in the follow-
ing form:

δb
δtot

= 1− k2

k2
F

+ rLSS, (11)

where the total density perturbation δtot = fbδb + fdmδdm
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The system of equations describing a high-k perturbation
mode in the presence of a background relative velocity is
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(Ωcδc +Ωbδb)− 2Hθb +

c2sk
2

a2
δb. (5)

The vbc terms are nominally second order in perturba-
tion theory, and hence one may wonder why they, rather
than other second-order terms, are included. The reason is
that the expansion parameter for these terms is not the den-
sity perturbation δ, but rather the ratio of the advection
terms (e.g. v(bg)bc kδc/a in the δc equation) to the linear terms
(e.g. ∂δc/∂t ∼ δc/H). This ratio is

v(bg)bc k

aH
. (6)

One can see that this expansion parameter increases as one
goes to smaller scales and is of order unity at k ∼ kvbc.
Thus the vbc terms become nonperturbative at small scales
k > kvbc, and when treating these small scales one must
keep these terms even if they are formally higher order in
the perturbation theory.

2.2 Complete heating model

The system of equations of Eq. (5) assumes a spatially uni-
form sound speed which is a good first-order approximation.
However, as shown in Naoz & Barkana (2005), it underesti-
mates baryon density fluctuations by more than 30 percent
at z = 100 and 10 percent at z = 20 for large wavenum-
bers. A fully correct treatment of baryon density evolution
requires analysis of the Compton heating from the CMB on
the sound speed and fluctuations in the temperature distri-
bution. Following Naoz & Barkana (2005), we re-write the
sound speed term of the last equation of Eq. (5) as
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δb → k2
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(δb + δT), (7)

where δT is the temperature perturbation which evolves as:
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+
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The second term on the right-hand side accounts for the
Compton scattering of the CMB photons on the residual
electrons from recombination. Here xe(t) is the electron frac-
tion relative to the total number density of gas particles2,
T̄γ = [2.725 K]/a is the mean CMB temperature, and

t−1
γ ≡ 8

3
ρ0γ

σT c
me

= 8.55× 10−13yr−1, (9)

2 This is different from the recombination literature, which often
takes xe to be normalized to the number of hydrogen nuclei. At
low redshifts these differ by 8 per cent due to the presence of
helium.

where σT is the Thomson scattering cross section, ρ0γ is the
photon energy density at z = 0, and T̄ is the average tem-
perature of the baryons, which can be calculated using the
first law of thermodynamics:

dT̄
dt

= −2HT̄ +
xe(t)
tγ

(T̄γ − T̄ ) a−4. (10)

Accounting for Compton heating of the residual electrons
by the CMB photons is especially important on small scales
(k > 1 Mpc−1), which are also impacted by the relative
motion effect.

3 FIRST HALOS AND THEIR GAS CONTENT

Both of the effects discussed above have a significant impact
on the evolution of density perturbations on small scales and
affect the formation of the first dark matter halos, as well as
the subsequent accretion of the baryons and the formation of
the first stars. We investigate the specific effects by studying
the change in the characteristic mass scale that divides gas-
rich and gas-poor halos produced by the relative velocity of
the dark matter and baryonic fluids.

3.1 Filtering mass

In the ΛCDM universe, virialized dark matter halos form
hierarchically on extremely small scales at very early times
and start accreting baryons into their potential wells. If ha-
los are heavy enough, accretion proceeds to the point where
baryons start cooling through molecular line emission, con-
densing into the first stars and galaxies. This accretion is
counteracted by the bulk motion of baryons with respect
to dark matter as well as by the thermal gas pressure. The
combination of the two effects leads to the presence of the
minimal halo mass scale at which baryons are still able to
effectively accrete onto a halo.

To study the effect of halo formation and baryonic ac-
cretion it is convenient to divide space into a large number
of patches of the size of the relative velocity coherence scale.
In each patch with a given mean density and bulk velocity,
we follow the evolution of density perturbations including
the spatial variation of the baryonic speed of sound due to
Compton heating from the CMB (Naoz & Barkana 2005).

By evolving the system of equations (5) with the cor-
rect sound speed term of Eq. (7) in each patch, we calcu-
late the baryonic and dark matter power spectra. Their ra-
tio is constant on large scales (small k), and drops at high
k due to the suppression of growth by the baryonic pres-
sure. Gnedin & Hui (1998) originally defined a “filtering”
scale (essentially a time-averaged Jeans scale) that they used
to identify the largest scale on which the baryon fluctu-
ations are substantially suppressed compared to those of
the dark matter. We use the generalized definition from
Naoz & Barkana (2007), in which the baryon-to-total ratio
is expanded to linear order in k2, and written in the follow-
ing form:

δb
δtot

= 1− k2

k2
F

+ rLSS, (11)

where the total density perturbation δtot = fbδb + fdmδdm
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FIG. 4: Top panel: The number density of dark matter haloes
produced in our simulation box with the effect of relative
velocity. Bottom panel: The relative decrease in the number
density of haloes as a function of the halo mass.

D. Bias, stochasticity and the large scale
distribution of early haloes

The introduction of relative motions modifies the cor-
relation between the first halos and the matter distribu-
tions rendering bias parameter scale dependent. Because
of the non-linear terms in the evolution equations dark
matter and baryonic matter evolve out of phase and the
growth of the overdense regions become dependent on
both δl and vbc.
To quantify this effect we calculated halo overdensity

using number densities of halos in each of the small boxes
from our simulation:

δn(M,x) =
N(M,x) − N̄(M)

N̄(M)
. (21)

Next, we calculate power spectra of halos of various
masses:

(2π)3δD(k−k
′)Phh(k|M) = 〈δn(M,k)δn(M,k′)∗〉, (22)

where δD is the Dirac δ-function.
The difference between this case and the case neglect-

ing vbc can be illustrated by defining a bias correction

parameter ∆b(k):

Phh(k) = b20

[

1 +
∆b(k)

b0

]2

Pmm(k), (23)

where b0 is a Gaussian scale independent bias, which in
the Press-Schecter formalism is given by:

b0 =
δc
σ2

−
1

δc
+ 1. (24)

Using these results along with the matter power spec-
trum we can obtain the scale-dependent component of
the bias parameter ∆b which is plotted in the top panel
of Figure 5 for various halo masses. The plot shows that
for halos with mass M ∼ 104–108M# there is a signif-
icant increase of the bias. The effect of vbc becomes
less important for heavier and lighter masses which can
be expected from the analysis of power suppression in
Fig. 2. This is principally a consequence of the fact that
for very massive haloes the baryons advect through a dis-
tance that is only a small fraction of the halo scale R, and
hence this advection does not affect the formation of the
halo; whereas for the lowest-mass haloes, whose scale R
is smaller than the baryon Jeans length, the baryons can
be treated as homogeneous irrespective of their velocity.
To further understand the importance of vbc we calcu-

late the stochasticity of the halos relative to the matter.
In the bottom panel of Figure 5 we plot the stochasticity
χ as a function of wave number k for various halo masses.
The stochasticity is defined as:

χ =
P 2
hm(k)

Phh(k)Pmm(k)
, (25)

where the cross power spectrum Phm is defined via
(2π)3δD(k−k′)Phm(k) = 〈δh(M,k)δ∗m(k′)〉. In the linear
theory, without consideration of the vbc effect one would
have χ = 1 (modulo Poisson corrections as described
above).
We checked the convergence of our results by running

the simulation with varying box sizes and varying ∆.
Specifically we tried runs with ∆ = 4 Mpc, and found
changes of less than 1% in the stochasticity and bias
over the range 0.2 < k < 1Mpc−1 at Mhalo = 104M#,
whereas using ∆ = 6 Mpc produces change greater
than 5% and distorts functional forms of both bias and
stochastisity at k > 0.1 Mpc−1. Similarly, increasing the
box size to 22753 Mpc3, whith fixed ∆ did not produce
observable change in χ and ∆b, whereas decreasing the
box size to 10003 Mpc3 changes our results by ∼ 5% at
k < 0.1Mpc−1.

IV. CONCLUSIONS AND PROSPECTS

We have shown that the relative velocity of baryonic
and dark matter fluids plays an important role in the
formation and evolution of small-scale structure of the

Tseliakhovich & Hirata 2010

Stream velocity e↵ects on structure formation 3

2.4. Position Shift in the Initial Conditions

It is customary to set the initial conditions such that
the phases of dark matter and baryons are the same,
as dictated by the linear perturbation theory. However,
because the stream velocity e↵ect is of the second order,
it violates the assumption. Namely, since the baryons
move in the dark matter reference frame, the respective
density perturbations that were co-located at the time
of recombination, become separated in space. In other
words, the phases of dark matter and baryons at the
same spatial location on su�ciently small scales become
unrelated.
The relative shift between dark matter and baryons is

easily calculated through the geodesic equation,

aẋ = v
bc

(a) , (1)

where x is the comoving distance, a is the scale factor,
and v

bc

(a) is the lagrangian velocity of a baryonic fluid
element in the dark matter reference frame as a function
of the scale factor a. Hence

�x
bc

(a) =

Z t

0

v
bc

(a)

a
dt , (2)

where t is the cosmic time at the scale factor a. Tak-
ing this integral, we find the relative shift in the posi-
tion between baryons and dark matter at z

in

= 199 is
�x

bc

= 18.5 comoving kpc/h for v
bc

= 1�
vbc

and is
⇠ 30.7 comoving kpc/h for v

bc

= 1.7�
vbc

. We test the
e↵ect of the position shift on two of the N = 256 runs
by adding the above values to the x component of the
baryons at the initial redshift z

in

, thus e↵ectively chang-
ing the phases of the baryons relative to dark matter.
As we find below, the relative shift between baryons

and dark matter is a small e↵ect, and it does not invali-
date the rest of our simulations, where the position shift
is neglected.

2.5. Halo definition

We locate dark matter halos by running a friends-of-
friends group-finder algorithm with a linking parameter
of 0.2 (only for the dark matter component). We use
the identified particle groups to find the center of mass
of each halo. After the center is located, we calculate
density profiles of dark matter and baryons separately,
assuming a spherical halo and using 2000 radial bins be-
tween r

min

= 0 kpc and r
max

= 20 kpc. Using the density
profiles, we find the virial radius rvir at which the total
overdensity is 200 times the mean background density,
and compute the mass and the gas fraction of each halo
within that radius.
Recently, More et al. (2011) showed that halos identi-

fied by the friends-of-friends algorithm enclose an average
overdensity that is substantially larger than 200 and its
specific value depends on the halo concentration. In our
approach we use the friends-of-friends algorithm only for
finding the center of mass of a halo, and compute the
actual halo mass using the spherical overdensity of 200.
We only retain halos that contain at least 500 dark

matter particles within their virial radii. The choice al-
lows us to estimate halo masses to about 15% precision
(Trenti et al. 2010) and to estimate halo gas fractions
reliably to a similar level of accuracy (Naoz et al. 2009).

Fig. 1.— Cumulative halo mass function for di↵erent simulations
and valus of vbc at z = 15. We show the N = 256 (long dashed
lines), N = 512 (solid lines), and N = 768 (short dashed lines). We
consider the values for the stream velocity of vbc = 0, vbc = 1�vbc,
vbc = 1.7�vbc, and vbc = 3.4�vbc, from top to bottom in each sets
of lines.

3. RESULTS

3.1. Suppression of the Halo Mass Function

We first consider all the simulations that do not in-
clude the relative position shift between baryons and
dark matter (i.e., all runs except N = 256

1�+p and N =
256

1.7�+p). Tseliakhovich & Hirata (2010) calculated the
number densities of collapsed halos with and without the
stream velocity, and illustrated the stream velocity ef-
fect on the abundance of small halos. Specifically, based
on the Press-Schechter formalism, they showed that the
number density of haloes with the rms stream velocity
N

vbc

(> M) is suppressed by more than 60% at the mass
scale of M ⇠ 106 M� in comparison to the case with no
stream velocity (N

0

(> M)).
In Figure 1 we show the halo mass functions at z =

15 for all our simulations. Indeed, as can be seen, the
halo number density is a strong function of the stream
velocity, resulting in substantial suppression of the halo
mass function for typical values of the stream velocity.6

Following Tseliakhovich & Hirata (2010), we quantify
the suppression of the halo mass function as

�
v

=
N

vbc

(> M)�N
0

(> M)

N
0

(> M)
. (3)

A more relevant quantity is, perhaps, the abundance of
halos that contain substantial amount of gas. It is such
halos that may host first stars and first supernovae, and
also serve as sinks of ionizing radiation during reioniza-
tion. Therefore, we also introduce

�
v,fg =

N
vbc

(> M, fg > f̄
b

/2)�N
0

(> M, fg > f̄
b

/2)

N
0

(> M, fg > f̄
b

/2)
(4)

as a relative di↵erence between the mass functions of
halos that contain more gas than one half of the cos-
mic mean baryon fraction (f̄

b

) in simulations with and

6 The lower halo mass function for the N = 768 runs is the result
of our simulation setup; N = 768 have much lower �8 than other
simulation sets.

z=40
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Figure 1. Comparison of three statistically independent minihalos with no streaming velocity (top panels), and with an initial streaming velocity of 3 km s−1 applied
at z = 99 from left to right (middle and bottom panels). We show the density-squared weighted gas temperature projected along the line of sight when the hydrogen
density in the center has just exceeded nH = 109 cm−3 (top and bottom panels), and when the streaming case has evolved to the same redshift as the no-streaming case
(middle panels). In the presence of streaming velocities, the effective Jeans mass of the gas is increased. The underlying DM halo therefore becomes more massive
before the gas can cool, which delays the onset of collapse. We also find that virial shocks are more pronounced in the direction of the incoming streaming flow than
in other directions. Nonlinear effects of this sort may result in a higher velocity dispersion of the gas (see also Figure 4).
(A color version of this figure is available in the online journal.)

greater than 1.5 km s−1 at z = 99, which we consider a lower
limit for the above delay to be significant, may be found by
integrating the above function from σ/2 = σ1d

√
3/2 to infinity,

which yields approximately 0.86. This shows that our results
may be considered representative for most of the volume of the
universe.

The cosmological number density of minihalos hosting
Pop III stars may then be estimated using the Sheth–Tormen
(Sheth et al. 2001) mass function:

nmh(z) =
∫ Mmax

Mmin

nst(M, z) dM, (4)

where we set Mmin = 1.5×105 M$ for the case of no streaming
velocities and Mmin = 5 × 105 M$ for the case of a universal
1σ streaming velocity, representing the factor of %3 increase in
minimum halo mass. The resulting number densities should be
considered upper limits, since not every halo at the low-mass end

forms a Pop III star. We set Mmax = 108 M$, but note that our
results are not sensititive to this parameter, since massive halos
are rare. As shown in Figure 5, the number of minihalos that
cool and form stars is reduced by up to an order of magnitude in
the presence of streaming velocities. Such a large effect implies
that streaming velocities should be taken into account when the
influence of the first stars on observables is investigated.

4. DISCUSSION

We have found that supersonic streaming velocities between
the DM and gas substantially delay the onset of gravitational
collapse in minihalos. The virial mass required for efficient
cooling is increased by a factor of %3, which results in
an average delay of Pop III star formation by ∆z = 4.
Streaming velocities also enhance the buildup of turbulence
during runaway collapse, which could affect the fragmentation
of the gas and hence the mass function of the first stars.
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Figure 1. Comparison of three statistically independent minihalos with no streaming velocity (top panels), and with an initial streaming velocity of 3 km s−1 applied
at z = 99 from left to right (middle and bottom panels). We show the density-squared weighted gas temperature projected along the line of sight when the hydrogen
density in the center has just exceeded nH = 109 cm−3 (top and bottom panels), and when the streaming case has evolved to the same redshift as the no-streaming case
(middle panels). In the presence of streaming velocities, the effective Jeans mass of the gas is increased. The underlying DM halo therefore becomes more massive
before the gas can cool, which delays the onset of collapse. We also find that virial shocks are more pronounced in the direction of the incoming streaming flow than
in other directions. Nonlinear effects of this sort may result in a higher velocity dispersion of the gas (see also Figure 4).
(A color version of this figure is available in the online journal.)
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Fig. 2.— E↵ect of the stream velocity on the cumulative halo
mass function for the N = 768 runs, for redshifts of (from bottom
to top panels) 19, 15, and 11. The relative di↵erence for all halos
(�v) is shown with the solid lines, while dashed lines show the
relative di↵erence for non-empty halos (�v,fg ), for various values of
the stream velocity vbc = 1�vbc, vbc = 1.7�vbc, and vbc = 3.4�vbc
(purple, brown and red lines respectively). Note that �v,fg for
vbc = 3.4�vbc at z = 19 is exactly �1 (i.e., there are no halos with
gas fraction above f̄b/2 in that simulation). The opposite is true
for vbc = 1�vbc at z = 15 and z = 11 - there are no empty halos in
those runs. The dotted vertical line in each panel marks the mass
at which the halo number density is 5 kpc�3.

Fig. 3.— Same as Figure 2 for the N = 512 runs at redshifts
(from bottom to top panels) 25, 19, and 15.

without the stream velocity, N
vbc

(> M, fg > f̄
b

/2) and
N

0

(> M, fg > f̄
b

/2) respectively.
We would call halos with gas fractions less then f̄

b

/2
“empty halos”, although, admittedly, this definition is
somewhat arbitrary and a di↵erent gas fraction threshold
could also be considered.
First we show in Figure 2 the relative suppression

of halo mass function due to the stream velocity for
all and for non-empty halos only (�

v

and �
v,fg ; solid

and dashed curves respectively) for the N = 768 set

Fig. 4.— Same as Figure 2 for the N = 256 runs at redshifts
(from bottom to top panels) 25, 19, and 15 and for 4 values of the
stream velocity vbc = 1�vbc, vbc = 1.7�vbc, vbc = 2.6�vbc, and
vbc = 3.4�vbc (purple, brown, green and red lines respectively).

of simulations. At z = 19 the suppression of the total
number density of halos is about 50% for 106 M� for
v
bc

= 3.4�
vbc

and ⇠ 15% for v
bc

= 1�
vbc

. As time
goes by, the e↵ect of the stream velocity diminishes, but
remains clearly visible even at the lowest redshift we con-
sider, z = 11, still present.
Perhaps the most interesting feature shown in Figure

2 is the high abundance of empty halos. At z = 19,
more than 20% of the halos below 106 M� are empty for
v
bc

= 1.7�
vbc

and all of the halos in the simulation are
empty for v

bc

= 3.4�
vbc

. These empty halos lay above
the minimum cooling mass7 (⇠ 3⇥ 105 M�, e.g., Trenti
& Stiavelli 2009). Thus, we conclude that, in patches
of the universe where the stream velocity is high, the
formation of the first stars and galaxies is delayed. This
behavior is consistent with the N = 512 simulation set
(Figure 3), where, for v

bc

= 3.4�
vbc

, most of the halos
below ⇠ 106 M� are empty of baryons at z = 19, and
all of the halos in the simulation are empty at z = 25.
Furthermore, for v

bc

= 1.7�
vbc

, more than 50% of the
halos below ⇠ 4⇥ 105 M� are empty for z � 19.

3.2. Saturation of the Halo Mass Function Suppression
in the Low Mass Limit

As expected, larger values for the stream velocity re-
sult in stronger suppression of the halo mass function.
However, in the N = 256 simulation set the e↵ect clearly
saturates for high values of v

bc

(see Figure 4). In order
to explore the nature of this saturation further, we com-
pare �

v

at z = 15 (the latest epoch that our N = 256
runs can be continued to) between di↵erent simulation
sets in Figure 5.
Overall, the agreement between all three simulation

sets is reasonable8; N = 256 set su↵ers from poor statis-
tics for M & 105M�, so the agreement between that se-
ries and two other sets is somewhat worse. Nevertheless,

7 We note that we in the simulations presented in the paper we
included only adiabatic cooling.

8 Note that this agreement is present through all the simulations
despite the di↵erent �8 assumed.
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2.4. Position Shift in the Initial Conditions

It is customary to set the initial conditions such that
the phases of dark matter and baryons are the same,
as dictated by the linear perturbation theory. However,
because the stream velocity e↵ect is of the second order,
it violates the assumption. Namely, since the baryons
move in the dark matter reference frame, the respective
density perturbations that were co-located at the time
of recombination, become separated in space. In other
words, the phases of dark matter and baryons at the
same spatial location on su�ciently small scales become
unrelated.
The relative shift between dark matter and baryons is

easily calculated through the geodesic equation,

aẋ = v
bc

(a) , (1)

where x is the comoving distance, a is the scale factor,
and v

bc

(a) is the lagrangian velocity of a baryonic fluid
element in the dark matter reference frame as a function
of the scale factor a. Hence

�x
bc

(a) =

Z t

0

v
bc

(a)

a
dt , (2)

where t is the cosmic time at the scale factor a. Tak-
ing this integral, we find the relative shift in the posi-
tion between baryons and dark matter at z

in

= 199 is
�x

bc

= 18.5 comoving kpc/h for v
bc

= 1�
vbc

and is
⇠ 30.7 comoving kpc/h for v

bc

= 1.7�
vbc

. We test the
e↵ect of the position shift on two of the N = 256 runs
by adding the above values to the x component of the
baryons at the initial redshift z

in

, thus e↵ectively chang-
ing the phases of the baryons relative to dark matter.
As we find below, the relative shift between baryons

and dark matter is a small e↵ect, and it does not invali-
date the rest of our simulations, where the position shift
is neglected.

2.5. Halo definition

We locate dark matter halos by running a friends-of-
friends group-finder algorithm with a linking parameter
of 0.2 (only for the dark matter component). We use
the identified particle groups to find the center of mass
of each halo. After the center is located, we calculate
density profiles of dark matter and baryons separately,
assuming a spherical halo and using 2000 radial bins be-
tween r

min

= 0 kpc and r
max

= 20 kpc. Using the density
profiles, we find the virial radius rvir at which the total
overdensity is 200 times the mean background density,
and compute the mass and the gas fraction of each halo
within that radius.
Recently, More et al. (2011) showed that halos identi-

fied by the friends-of-friends algorithm enclose an average
overdensity that is substantially larger than 200 and its
specific value depends on the halo concentration. In our
approach we use the friends-of-friends algorithm only for
finding the center of mass of a halo, and compute the
actual halo mass using the spherical overdensity of 200.
We only retain halos that contain at least 500 dark

matter particles within their virial radii. The choice al-
lows us to estimate halo masses to about 15% precision
(Trenti et al. 2010) and to estimate halo gas fractions
reliably to a similar level of accuracy (Naoz et al. 2009).

Fig. 1.— Cumulative halo mass function for di↵erent simulations
and valus of vbc at z = 15. We show the N = 256 (long dashed
lines), N = 512 (solid lines), and N = 768 (short dashed lines). We
consider the values for the stream velocity of vbc = 0, vbc = 1�vbc,
vbc = 1.7�vbc, and vbc = 3.4�vbc, from top to bottom in each sets
of lines.

3. RESULTS

3.1. Suppression of the Halo Mass Function

We first consider all the simulations that do not in-
clude the relative position shift between baryons and
dark matter (i.e., all runs except N = 256

1�+p and N =
256

1.7�+p). Tseliakhovich & Hirata (2010) calculated the
number densities of collapsed halos with and without the
stream velocity, and illustrated the stream velocity ef-
fect on the abundance of small halos. Specifically, based
on the Press-Schechter formalism, they showed that the
number density of haloes with the rms stream velocity
N

vbc

(> M) is suppressed by more than 60% at the mass
scale of M ⇠ 106 M� in comparison to the case with no
stream velocity (N

0

(> M)).
In Figure 1 we show the halo mass functions at z =

15 for all our simulations. Indeed, as can be seen, the
halo number density is a strong function of the stream
velocity, resulting in substantial suppression of the halo
mass function for typical values of the stream velocity.6

Following Tseliakhovich & Hirata (2010), we quantify
the suppression of the halo mass function as

�
v

=
N

vbc

(> M)�N
0

(> M)

N
0

(> M)
. (3)

A more relevant quantity is, perhaps, the abundance of
halos that contain substantial amount of gas. It is such
halos that may host first stars and first supernovae, and
also serve as sinks of ionizing radiation during reioniza-
tion. Therefore, we also introduce

�
v,fg =

N
vbc

(> M, fg > f̄
b

/2)�N
0

(> M, fg > f̄
b

/2)

N
0

(> M, fg > f̄
b

/2)
(4)

as a relative di↵erence between the mass functions of
halos that contain more gas than one half of the cos-
mic mean baryon fraction (f̄

b

) in simulations with and

6 The lower halo mass function for the N = 768 runs is the result
of our simulation setup; N = 768 have much lower �8 than other
simulation sets.
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density perturbations that were co-located at the time
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, thus e↵ectively chang-
ing the phases of the baryons relative to dark matter.
As we find below, the relative shift between baryons

and dark matter is a small e↵ect, and it does not invali-
date the rest of our simulations, where the position shift
is neglected.

2.5. Halo definition

We locate dark matter halos by running a friends-of-
friends group-finder algorithm with a linking parameter
of 0.2 (only for the dark matter component). We use
the identified particle groups to find the center of mass
of each halo. After the center is located, we calculate
density profiles of dark matter and baryons separately,
assuming a spherical halo and using 2000 radial bins be-
tween r

min

= 0 kpc and r
max

= 20 kpc. Using the density
profiles, we find the virial radius rvir at which the total
overdensity is 200 times the mean background density,
and compute the mass and the gas fraction of each halo
within that radius.
Recently, More et al. (2011) showed that halos identi-

fied by the friends-of-friends algorithm enclose an average
overdensity that is substantially larger than 200 and its
specific value depends on the halo concentration. In our
approach we use the friends-of-friends algorithm only for
finding the center of mass of a halo, and compute the
actual halo mass using the spherical overdensity of 200.
We only retain halos that contain at least 500 dark

matter particles within their virial radii. The choice al-
lows us to estimate halo masses to about 15% precision
(Trenti et al. 2010) and to estimate halo gas fractions
reliably to a similar level of accuracy (Naoz et al. 2009).

Fig. 1.— Cumulative halo mass function for di↵erent simulations
and valus of vbc at z = 15. We show the N = 256 (long dashed
lines), N = 512 (solid lines), and N = 768 (short dashed lines). We
consider the values for the stream velocity of vbc = 0, vbc = 1�vbc,
vbc = 1.7�vbc, and vbc = 3.4�vbc, from top to bottom in each sets
of lines.

3. RESULTS

3.1. Suppression of the Halo Mass Function

We first consider all the simulations that do not in-
clude the relative position shift between baryons and
dark matter (i.e., all runs except N = 256

1�+p and N =
256

1.7�+p). Tseliakhovich & Hirata (2010) calculated the
number densities of collapsed halos with and without the
stream velocity, and illustrated the stream velocity ef-
fect on the abundance of small halos. Specifically, based
on the Press-Schechter formalism, they showed that the
number density of haloes with the rms stream velocity
N

vbc

(> M) is suppressed by more than 60% at the mass
scale of M ⇠ 106 M� in comparison to the case with no
stream velocity (N

0

(> M)).
In Figure 1 we show the halo mass functions at z =

15 for all our simulations. Indeed, as can be seen, the
halo number density is a strong function of the stream
velocity, resulting in substantial suppression of the halo
mass function for typical values of the stream velocity.6

Following Tseliakhovich & Hirata (2010), we quantify
the suppression of the halo mass function as

�
v

=
N

vbc

(> M)�N
0

(> M)

N
0

(> M)
. (3)

A more relevant quantity is, perhaps, the abundance of
halos that contain substantial amount of gas. It is such
halos that may host first stars and first supernovae, and
also serve as sinks of ionizing radiation during reioniza-
tion. Therefore, we also introduce

�
v,fg =

N
vbc

(> M, fg > f̄
b

/2)�N
0

(> M, fg > f̄
b

/2)

N
0

(> M, fg > f̄
b

/2)
(4)

as a relative di↵erence between the mass functions of
halos that contain more gas than one half of the cos-
mic mean baryon fraction (f̄

b

) in simulations with and

6 The lower halo mass function for the N = 768 runs is the result
of our simulation setup; N = 768 have much lower �8 than other
simulation sets.
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Fig. 5.— Halo mass function suppression factor �v at z = 15 for
all our simulation sets for di↵erent values of the stream velocity
(from bottom to top) of vbc = 1�vbc, 1.7�vbc, and 3.4�vbc. In
all panels N = 768, N = 512, and N = 256 simulation sets are
represented by dashed, solid, and dotted lines respectively. All 3
simulations sets are reasonably consistent with each other within
the cosmic variance. Note that to check consistency with somewhat
lower mass values, we have lowered the threshold for the number
of particles per halo to 300 particles per halos only for the N = 768
runs and only in order to generate this figure.

the e↵ect of saturation for low masses is clearly visible
for all values of v

bc

.
The reason why �

v

as a function of halo mass is ex-
pected to saturate at the low mass limit is understood
as follows. For halo mass of 105 M� the escape veloc-
ity is about 0.77 km sec�1, while the stream velocity for
v
bc

= 3.4�
vbc

at z = 15 is 1.6 km sec�1 and at z = 25 is
2.6 km sec�1. Thus, it is not surprising that halos below
105 M� are empty in that redshift range - the stream
velocity is simply much larger then the halo escape ve-
locity, so the dark matter halo is unable to accrete any
gas. Hence, such a halo will have only about (1� f̄

b

) of
the mass it would have had if v

bc

= 0. Since the cumula-
tive mass function N(> M) / M�1 in this mass regime,
the loss of baryons by low mass halos results in f̄

b

⇡ 0.17
reduction in the halo mass function.
At larger masses the interaction between the baryons

moving with the highly supersonic velocity and the dark
matter halo becomes more complex. For example, in
the v

bc

= 3.4�
vbc

case the mass function is smaller by
⇠ 40% at 105M� . M . 3 ⇥ 106M�. This magnitude
of the e↵ect cannot be explained by the loss of baryons
alone; some non-negligible fraction of dark matter has to
be lost by a halo as well. Note that the simulations sets
N = 512 and N = 768 have di↵erent �

8

, but agree well
in the magnitude of the halo mass function suppression.
Hence, these results suggest that the suppression e↵ect
is largely due to non-trivial non-linear interaction of the
baryonic flow and the dark matter halo.
In Figure 5 we consider the time evolution of the halo

mass function suppression factor for a halo mass that
lays safely above the molecular hydrogen cooling mass
(e.g., Trenti & Stiavelli 2009). We choose a value of 5⇥
105 M�, which is well resolved and statistically reliably
represented in both N = 768 and N = 512 simulation

Fig. 6.— Halo mass function suppression factor �v as a function
of time for 5⇥ 105 M� halos. In this figure we only show N = 768
(dot-dashed curves) and N = 512 (solid curves) simulation sets.
We also show the suppression factor for non-empty halos, �v,fg ,
with dotted lines. We consider vbc = 1�vbc, vbc = 1.7�vbc, and
vbc = 3.4�vbc from bottom to top panels respectively.

sets. This comparison suggests significant delay in the
formation epoch of gas rich halos, which, in principle,
could have formed stars. We find that for v

bc

= 1�
vbc

the suppression is modest, in agreement with previous
studies (Maio et al. 2011; Stacy et al. 2011). However,
for larger values of the stream velocity (v

bc

= 1.7�
vbc

and v
bc

= 3.4�
vbc

) we find a significant delay and large
abundance of empty halos.

3.3. Position Shift

As we discussed in §2.4, the stream velocity also causes
the baryons to shift in position relative to dark mater.
We have tested this e↵ect in two of the N = 256 simula-
tion runs. In Figure 7 we show the relative suppression
of halo formation comparing between the cases with and
without the position shift (thin and thick curves respec-
tively). By z = 15 the relative shift in the positions is
erased; at earlier times the e↵ect is noticeable, but it
never becomes the dominant e↵ect in the change in the
halo mass function induced by the stream velocity.

3.4. Suppression of the Clumping Factor

The baryonic clumping factor plays an important role
in the penetration and escape of radiation from an in-
homogeneous medium and thus the e↵ects of the stream
velocity also depicted in the suppression of the clumping
factor (e.g., Barkana & Loeb 2001). Adopting Springel
& Hernquist (2003) for estimating the clumping factor C
from SPH simulations we define

C =

P
i mb,i⇢i(< �⇢c)�1

P
j mb,j⇢j(< �⇢c)

(
P

k mb,k)
2

, (5)

where mb is the mass of the baryon particles in our sim-
ulations, ⇢c is the critical density in the Universe, and
the summation is over all gas particles.
Following Maio et al. (2006) we sum over all gas par-

ticles whose density ⇢i is smaller than a given thresh-
old �⇢c. Thus, we avoid numerical artifacts that are
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(from bottom to top) of vbc = 1�vbc, 1.7�vbc, and 3.4�vbc. In
all panels N = 768, N = 512, and N = 256 simulation sets are
represented by dashed, solid, and dotted lines respectively. All 3
simulations sets are reasonably consistent with each other within
the cosmic variance. Note that to check consistency with somewhat
lower mass values, we have lowered the threshold for the number
of particles per halo to 300 particles per halos only for the N = 768
runs and only in order to generate this figure.

the e↵ect of saturation for low masses is clearly visible
for all values of v

bc

.
The reason why �

v

as a function of halo mass is ex-
pected to saturate at the low mass limit is understood
as follows. For halo mass of 105 M� the escape veloc-
ity is about 0.77 km sec�1, while the stream velocity for
v
bc

= 3.4�
vbc

at z = 15 is 1.6 km sec�1 and at z = 25 is
2.6 km sec�1. Thus, it is not surprising that halos below
105 M� are empty in that redshift range - the stream
velocity is simply much larger then the halo escape ve-
locity, so the dark matter halo is unable to accrete any
gas. Hence, such a halo will have only about (1� f̄

b

) of
the mass it would have had if v

bc

= 0. Since the cumula-
tive mass function N(> M) / M�1 in this mass regime,
the loss of baryons by low mass halos results in f̄

b

⇡ 0.17
reduction in the halo mass function.
At larger masses the interaction between the baryons

moving with the highly supersonic velocity and the dark
matter halo becomes more complex. For example, in
the v

bc

= 3.4�
vbc

case the mass function is smaller by
⇠ 40% at 105M� . M . 3 ⇥ 106M�. This magnitude
of the e↵ect cannot be explained by the loss of baryons
alone; some non-negligible fraction of dark matter has to
be lost by a halo as well. Note that the simulations sets
N = 512 and N = 768 have di↵erent �

8

, but agree well
in the magnitude of the halo mass function suppression.
Hence, these results suggest that the suppression e↵ect
is largely due to non-trivial non-linear interaction of the
baryonic flow and the dark matter halo.
In Figure 5 we consider the time evolution of the halo

mass function suppression factor for a halo mass that
lays safely above the molecular hydrogen cooling mass
(e.g., Trenti & Stiavelli 2009). We choose a value of 5⇥
105 M�, which is well resolved and statistically reliably
represented in both N = 768 and N = 512 simulation

Fig. 6.— Halo mass function suppression factor �v as a function
of time for 5⇥ 105 M� halos. In this figure we only show N = 768
(dot-dashed curves) and N = 512 (solid curves) simulation sets.
We also show the suppression factor for non-empty halos, �v,fg ,
with dotted lines. We consider vbc = 1�vbc, vbc = 1.7�vbc, and
vbc = 3.4�vbc from bottom to top panels respectively.

sets. This comparison suggests significant delay in the
formation epoch of gas rich halos, which, in principle,
could have formed stars. We find that for v

bc

= 1�
vbc

the suppression is modest, in agreement with previous
studies (Maio et al. 2011; Stacy et al. 2011). However,
for larger values of the stream velocity (v

bc

= 1.7�
vbc

and v
bc

= 3.4�
vbc

) we find a significant delay and large
abundance of empty halos.

3.3. Position Shift

As we discussed in §2.4, the stream velocity also causes
the baryons to shift in position relative to dark mater.
We have tested this e↵ect in two of the N = 256 simula-
tion runs. In Figure 7 we show the relative suppression
of halo formation comparing between the cases with and
without the position shift (thin and thick curves respec-
tively). By z = 15 the relative shift in the positions is
erased; at earlier times the e↵ect is noticeable, but it
never becomes the dominant e↵ect in the change in the
halo mass function induced by the stream velocity.

3.4. Suppression of the Clumping Factor

The baryonic clumping factor plays an important role
in the penetration and escape of radiation from an in-
homogeneous medium and thus the e↵ects of the stream
velocity also depicted in the suppression of the clumping
factor (e.g., Barkana & Loeb 2001). Adopting Springel
& Hernquist (2003) for estimating the clumping factor C
from SPH simulations we define

C =

P
i mb,i⇢i(< �⇢c)�1

P
j mb,j⇢j(< �⇢c)

(
P

k mb,k)
2

, (5)

where mb is the mass of the baryon particles in our sim-
ulations, ⇢c is the critical density in the Universe, and
the summation is over all gas particles.
Following Maio et al. (2006) we sum over all gas par-

ticles whose density ⇢i is smaller than a given thresh-
old �⇢c. Thus, we avoid numerical artifacts that are

For M~
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2.4. Position Shift in the Initial Conditions

It is customary to set the initial conditions such that
the phases of dark matter and baryons are the same,
as dictated by the linear perturbation theory. However,
because the stream velocity e↵ect is of the second order,
it violates the assumption. Namely, since the baryons
move in the dark matter reference frame, the respective
density perturbations that were co-located at the time
of recombination, become separated in space. In other
words, the phases of dark matter and baryons at the
same spatial location on su�ciently small scales become
unrelated.
The relative shift between dark matter and baryons is

easily calculated through the geodesic equation,

aẋ = v
bc

(a) , (1)

where x is the comoving distance, a is the scale factor,
and v

bc

(a) is the lagrangian velocity of a baryonic fluid
element in the dark matter reference frame as a function
of the scale factor a. Hence

�x
bc

(a) =

Z t

0

v
bc

(a)

a
dt , (2)

where t is the cosmic time at the scale factor a. Tak-
ing this integral, we find the relative shift in the posi-
tion between baryons and dark matter at z

in

= 199 is
�x

bc

= 18.5 comoving kpc/h for v
bc

= 1�
vbc

and is
⇠ 30.7 comoving kpc/h for v

bc

= 1.7�
vbc

. We test the
e↵ect of the position shift on two of the N = 256 runs
by adding the above values to the x component of the
baryons at the initial redshift z

in

, thus e↵ectively chang-
ing the phases of the baryons relative to dark matter.
As we find below, the relative shift between baryons

and dark matter is a small e↵ect, and it does not invali-
date the rest of our simulations, where the position shift
is neglected.

2.5. Halo definition

We locate dark matter halos by running a friends-of-
friends group-finder algorithm with a linking parameter
of 0.2 (only for the dark matter component). We use
the identified particle groups to find the center of mass
of each halo. After the center is located, we calculate
density profiles of dark matter and baryons separately,
assuming a spherical halo and using 2000 radial bins be-
tween r

min

= 0 kpc and r
max

= 20 kpc. Using the density
profiles, we find the virial radius rvir at which the total
overdensity is 200 times the mean background density,
and compute the mass and the gas fraction of each halo
within that radius.
Recently, More et al. (2011) showed that halos identi-

fied by the friends-of-friends algorithm enclose an average
overdensity that is substantially larger than 200 and its
specific value depends on the halo concentration. In our
approach we use the friends-of-friends algorithm only for
finding the center of mass of a halo, and compute the
actual halo mass using the spherical overdensity of 200.
We only retain halos that contain at least 500 dark

matter particles within their virial radii. The choice al-
lows us to estimate halo masses to about 15% precision
(Trenti et al. 2010) and to estimate halo gas fractions
reliably to a similar level of accuracy (Naoz et al. 2009).

Fig. 1.— Cumulative halo mass function for di↵erent simulations
and valus of vbc at z = 15. We show the N = 256 (long dashed
lines), N = 512 (solid lines), and N = 768 (short dashed lines). We
consider the values for the stream velocity of vbc = 0, vbc = 1�vbc,
vbc = 1.7�vbc, and vbc = 3.4�vbc, from top to bottom in each sets
of lines.

3. RESULTS

3.1. Suppression of the Halo Mass Function

We first consider all the simulations that do not in-
clude the relative position shift between baryons and
dark matter (i.e., all runs except N = 256

1�+p and N =
256

1.7�+p). Tseliakhovich & Hirata (2010) calculated the
number densities of collapsed halos with and without the
stream velocity, and illustrated the stream velocity ef-
fect on the abundance of small halos. Specifically, based
on the Press-Schechter formalism, they showed that the
number density of haloes with the rms stream velocity
N

vbc

(> M) is suppressed by more than 60% at the mass
scale of M ⇠ 106 M� in comparison to the case with no
stream velocity (N

0

(> M)).
In Figure 1 we show the halo mass functions at z =

15 for all our simulations. Indeed, as can be seen, the
halo number density is a strong function of the stream
velocity, resulting in substantial suppression of the halo
mass function for typical values of the stream velocity.6

Following Tseliakhovich & Hirata (2010), we quantify
the suppression of the halo mass function as

�
v

=
N

vbc

(> M)�N
0

(> M)

N
0

(> M)
. (3)

A more relevant quantity is, perhaps, the abundance of
halos that contain substantial amount of gas. It is such
halos that may host first stars and first supernovae, and
also serve as sinks of ionizing radiation during reioniza-
tion. Therefore, we also introduce

�
v,fg =

N
vbc

(> M, fg > f̄
b

/2)�N
0

(> M, fg > f̄
b

/2)

N
0

(> M, fg > f̄
b

/2)
(4)

as a relative di↵erence between the mass functions of
halos that contain more gas than one half of the cos-
mic mean baryon fraction (f̄

b

) in simulations with and

6 The lower halo mass function for the N = 768 runs is the result
of our simulation setup; N = 768 have much lower �8 than other
simulation sets.

Gadget 2 
2563 (baryons + DM)

(starting at z=199, 0.2Mpc, soft~40pc,                     
Mdm~30.7M⦿ Mb~6M⦿ )

Position shift
6 Naoz et al.

Fig. 7.— Halo mass function suppression factors �v (solid
curves) and �v,fg (dashed curves) for vbc = 1�vbc and vbc =
1.7�vbc cases (purple and brown curves respectively). Thin curves
represent simulations that properly account for the position shift
(2561�+p and 2561.7�+p runs), while thick curves show our fidu-
cial approach, without adding a position shift to the initial con-
ditions (i.e., initializing the simulation with the same phases for
the baryons and dark matter, 2561�vbc and 2561.7�). As one can
see, the relative shift in the positions of baryons and dark matter
makes only a modest correction.

Fig. 8.— The clumping factor as a function of redshift. In the
bottom panel we consider the clumping factor evolution for vbc =
0, vbc = 1�vbc, vbc = 1.7�vbc, and vbc = 3.4�vbc (blue,purple,
brown and red lines respectively), choosing � = 200. We show
in dashed lines the resulted fit to equation (6); see table 2 for the
fit parameters. In the top panel we consider the suppression ratio
Cvbc/Cvbc=0�1 (see text) for overdensity case of � = 200 (we use
the same color code as in previous figures). Note that the results
for z = 13 and z = 10 of the run 7680 are missing due to computer
failure.

TABLE 2

Fitting Parameters

vbc a1 a2 a3 a4

0 415.1± 66.4 �0.32± 0.01 0.06± 0.12 0.13± 0.09
1�vbc 393.8± 42.3 �0.33± 0.01 0.05± 0.07 0.15± 0.08
1.7�vbc 439.4± 54.4 �0.35± 0.01 0.12± 0.15 0.1± 0.06
3.4�vbc 607.1± 75.7 �0.41± 0.01 0.55± 0.27 0.04± 0.02

produced by gas particles belonging to collapsed objects
which would artificially increase the value of C due to
their high density. In Figure 8 we show the clumping
factor for the N = 768 run. We choose to show the re-
sults of only this set of runs because the clumping factor
depends on the assumed initial fluctuation amplitudes.
For this run the gas particle mass is mb = 225.5 M� for
all SPH particles9. In Figure 8, bottom panel, we show
the clumping factor for overdensity of � = 200, and we
also test � = 500 (dotted lines). Note, that we omit the
� = 100 lines from the figure, to reduce the clutter, this
choice gives a typical 1% reduction of the clumping fac-
tor at z = 14 and about 15% at z = 10 (for all v

bc

cases).
We also consider (top panel) the relative suppression ra-
tio C

vbc

/C
vbc=0

� 1, where C
vbc

is the clumping factor
for the case with stream velocity and C

vbc=0

is for the
case without the stream velocity e↵ect.
The growth of the clumping factor as a function of time

is quite regular with a behavior, at high redshift, that
resembles exponential asymptotic decay. We assume an
exponential behavior and find a simple fit in the form of:

C(z) = a
1

ea2z + a
3

expa4z . (6)

We summarize the fit results (for � = 200 for di↵erent
values of v

bc

) in table 2.
As shown in Figure 8 the stream velocity suppresses

the clumping of baryon especially at lower redshift. At
high redshift the clumping is similar and indeed low in
all cases. However, as time goes by, the clumpiness in
the case without stream velocity increases dramatically,
while it is smaller by about 50% for v

bc

= 3.4�
vbc

. Figure
8 also shows that the suppression reaches a saturation
at z = 14 � 12 and below this redshift we find smaller
di↵erences.

4. DISCUSSION

We have used three-dimensional hydrodynamical simu-
lations to investigate the e↵ects of stream velocity on halo
mass function in the early universe (in a companion pa-
per Naoz et al. 2011, we study the e↵ect on the gas frac-
tion and filtering mass). Tseliakhovich & Hirata (2010)
showed recently, within the frame work of linear theory,
that the initial velocity di↵erence between baryons and
dark matter after recombination significantly suppresses
the halo mass function at small scales.
We found that the total halo mass function as a func-

tion of mass is significantly suppressed in all of our
simulation sets (see Figures 2–4). Summarizing Fig-
ures 2–6, we find that for a range of halos between

9 Unlike the variables �v and �v,fg the clumping factor is very
sensitive to the assumed initial fluctuation amplitudes (because
essentially we count the number of clumps, which is larger for large
�8).
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Figure 1. Perturbation ratio δb/δtot vs. comoving wavenumber
k evaluated at z = 20 for the cases of vbc = 0 (solid curve),
vbc = 1σvbc (dashed curve), and vbc = 2σvbc (dotted curve). In
all cases overdensities are isotropically averaged over the direction
of k with respect to vbc.

(in terms of the cosmic baryon and dark matter mass frac-
tions fb and fdm), and the k-independent rLSS term (which
is negative) describes the relative baryon-to-total difference
in the limit of large scale structure, i.e., where both the
vbc effect and the thermal pressure of the gas are negligi-
ble (and restricted also to scales below the baryon acoustic
oscillations).

In Fig. 1 we plot the isotropically averaged perturbation
ratio δb/δtot by averaging over the direction of k with respect
to vbc. On large scales the ratio is very close to constant,
and using Eq. (11) we can deduce rLSS = −0.054 at z =
20. The filtering scale kF is obtained by fitting Eq. (11) to
the calculated values of the ratio δb/δtot from Fig. 1. This
allows us to define the filtering mass in terms of the filtering
wavenumber:

MF =
4π
3
ρ̄0

(

π
kF

)3

, (12)

where ρ̄0 is the mean matter density today. We note that
this relation is 1

8 of the definition originally used by Gnedin
(2000), who also used a non-standard definition of the Jeans
mass.

The filtering mass plays an extremely important role in
understanding the evolution of the first halos, as it provides
a good approximation for the boundary between the gas-rich
halos and halos that do not contain substantial quantities
of gas. Traditionally one would assume that the separation
between gas-rich and gas-poor objects is represented by the
Jeans scale, which is the minimum scale on which a small gas
perturbations will grow due to gravity overcoming the pres-
sure gradient. However, the Jeans scale is related only to the
evolution of the perturbations at a given point in time and
does not account for significant variation of the Jeans mass
with time. The filtering mass on the other hand reflects the
baryonic pressure effects integrated over the entire history
of the Universe, and provides a much better approximation
to the boundary between gas-rich and gas-poor halos.

An extensive study of the filtering mass properties
and evolution history in models without the relative ve-
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Figure 2. Evolution of the filtering mass with redshift in the
regions with vbc = 0 (thin solid line), vbc = 1σvbc (dashed line),
vbc = 2σvbc (dotted line) and global average case (thick solid
line). We also show the evolution of the Jeans mass MJ (dot-
dashed line).

locity effect was performed in Naoz & Barkana (2005) and
Naoz & Barkana (2007). The properties of the filtering
mass, however, are significantly modified in the regions
where the bulk motion of baryons with respect to dark mat-
ter potential wells is significant. In regions with high values
of vbc baryons tend to advect out of the collapsing dark
matter halos, significantly increasing the filtering mass. We
demonstrate this in Fig. 2 where we plot the evolution of the
filtering mass with redshift in the regions with vbc/σvbc = 0,
1, and 2. We also show the globally averaged case by inte-
grating the filtering mass over the full probability distribu-
tion of the relative velocity, given by:3

Pvbc(v) =

(

3
2πσ2

vbc

)3/2

4πv2 exp

(

− 3v2

2σ2
vbc

)

. (13)

As noted earlier, the variance per axis is σ2
vbc/3.

In Fig. 2 we also compare the filtering mass with the
Jeans mass defined as:

MJ =
4π
3
ρ̄0

(

π
kJ

)3

, (14)

where kJ =
√

2/3aH/cs is the Jeans scale (defined by set-
ting the right-hand side of Eq. (5) to zero, without the rel-
ative velocity term, and neglecting here the correction of
Eq. (7)). Fig. 2 shows that the filtering mass reaches a max-
imum value at redshift z ∼ 40 (and generally varies only
slightly throughout the plotted redshift range), whereas the
Jeans mass continuously decreases with time due to the drop
in the sound speed of the gas as the Universe cools.

The filtering mass represents a time averaged Jeans
mass and hence it decreases at the low redshifts, however,
right after recombination baryonic perturbations on small

3 This is the distribution of the magnitude of vbc, where the vec-
tor vbc is the result of linear perturbations and hence is drawn
from a multivariate Gaussian. It thus happens to be the same as
the Maxwell-Boltzmann distribution, even though the bulk ve-
locities of baryons have nothing to do with thermal motions of
particles.
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Indeed, the above argument suggests more generally that
halo formation and vbc(z) scale together so that the effect of
the bulk velocity should not depend separately on redshift;
also the effect of molecular cooling is a redshift-independent
threshold. Thus, when both effects act together, the result
should still depend on just one parameter.

We expect the dependence on velocity to be smooth and
well-behaved for vector vbc(z) near zero, i.e., as a function
of the velocity components. This suggests a quadratic de-
pendence on [vbc(z)]

2 = [vbc(z)]
2 rather than, e.g., a linear

dependence on vbc(z). We thus propose a simple ansatz for
the minimum cooling threshold of halos that form at redshift
z:

Vcool(z) =
{

V 2
cool,0 + [αvbc(z)]

2}1/2
. (2)

The dependence of the circular velocity Vcool on redshift only
through the final value vbc(z) implies that the star-formation
threshold in a patch with a statistically rare, high value of
vbc at low redshift is the same as the threshold in a patch
with the same (but now statistically more typical) value of
vbc at high redshift. This should be the case during the era
of primordial star formation, before metal enrichment and
other feedbacks complicate matters.

We summarize the results of the two simulations to-
gether with the best fits to each of them (with Vcool,0 and
α as free parameters) in Figure 1 (top panel). We obtain
four data points from Stacy et al. (2010) with non-zero ve-
locities (and two more at vbc(z) = 0), and three points
from Greif et al. (2011) (plus three more at vbc(z) = 0).
The best-fit parameters are: (1) Vcool,0 = 3.640 km sec−1

and α = 3.176 for the results of Stacy et al. (2010); (2)
Vcool,0 = 3.786 km sec−1 and α = 4.707 for Greif et al.
(2011).

We note that despite the small numbers of halos, we
would not necessarily expect as large a scatter in the mea-
sured Vcool(z) as in other measurements of halo properties;
for example, in a sample with a large number of halos of
various masses at each redshift, we would expect a large
range of redshifts for the first star formation within a halo,
but if we only take halos that first formed a star at a given
redshift z, their masses at z might span a narrow range, all
near the minimum cooling mass for that redshift (since any
halo well above the cooling mass at z would already have
formed a star earlier). In any case, our ansatz fits each set
of simulation results reasonably well, but there is some scat-
ter and also a systematic difference between the two sets
(with Greif et al. (2011) indicating a stronger effect of the
bulk velocity). Due to the small number of simulated halos,
it is difficult to separate the possible effects of different nu-
merical resolutions, other differences in the gravitational or
hydrodynamical solvers, and real cosmic scatter among ha-
los. Given the systematic offset, we do not simultaneously fit
both sets of points, but instead average the best-fit parame-
ters of the two SPH simulation sets. We mostly use this fit,
which we refer to as our optimal fit, in the following sections:

Vcool(z) =
{

(3.714 km/s)2 + [4.015 · vbc(z)]
2}1/2

. (3)

There is some discrepancy in the value of Vcool,0 found in
AMR and SPH simulations. In order to test the full current
uncertainty range including different types of simulations,
we also consider the average value Vcool,0 ∼ 4.2 km sec−1

found in AMR simulations (Yoshida et al. 2006; Turk et al.
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Figure 1. Top panel: The minimum halo circular velocity for
gas cooling via molecular hydrogen versus the bulk velocity vbc(z)
when the halo virializes. Data are taken from Stacy et al. (2010)
(•) and Greif et al. (2011) (!). We show our fits to each set of
simulation results (dot-dashed and dashed, respectively). We also
show our “optimal” fit to SPH simulations (thick solid line), the
“fit” to AMR simulations (regular solid line), and the case of no
streaming velocity (dotted line, based on our optimal fit). The
vertical solid line marks the root-mean-square value of vbc(z) at
z = 20. Bottom panel: We show the minimum halo mass for
molecular cooling versus redshift, in a patch with the root-mean-
square value of vbc(z) at each redshift z, for each of the fits from
the top panel; in particular, we show (dotted line) the case of no
relative motion based on our optimal fit (i.e., Vcool = Vcool,0 =
3.714 km sec−1).

2011). Thus, we combine this value of Vcool,0 with α from
our optimal fit to obtain what we refer to as a “fit” to AMR
simulations. In other words, we assume that the discrepancy
between the two simulation methods is only in the cool-
ing process (due to systematic entropy differences in dense
cores), but that they would agree on the effect of the bulk
motion. Regardless of which fit we use, Figure 1 shows that
the relative motion has a large effect on the minimum cir-
cular velocity.

The implications for the minimum cooling mass as a
function of redshift are also shown in Figure 1 (bottom
panel). In a patch with no relative motion, the mass drops
rapidly with redshift, since at higher redshift the gas density
is higher and a given halo mass heats the infalling gas to a
higher virial temperature. However, in a region at the root-
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The Role of Baryons

First order correction of the linear theory: cs(r)  +  δdm≠δb at 
time of recombination 

★ Effect the power spectrum: cs(r) =Const. ⇒ underestimate 
the baryons, and the baryon temperature fluctuations. 

★ Role of pressure is only moderate, and gas can accumulate 
on smaller halos

Second order correction: vb ≠ vdm 

★ Suppression of small mass halos + sterile halos 
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